• Title/Summary/Keyword: Template condensation

Search Result 23, Processing Time 0.024 seconds

Synthesis and Characterization of New Polyaza Non-macrocyclic and Macrocyclic Nickel(II) Complexes Containing One 1,3-Diazacyclohexane Ring

  • Lee, Yun-Taek;Jang, Bo Woo;Kang, Shin-Geol
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.7
    • /
    • pp.2125-2130
    • /
    • 2013
  • A new nickel(II) complex $[NiL^1]^{2+}$ ($L^1$ = 1-(2-aminoethyl)-3-(N-{2-aminoethyl}aminomethyl-1,3-diazacyclohexane) containing one 1,3-diazacyclohexane ring has been prepared selectively by the metal-template condensation of formaldehyde with N-(2-aminoethyl)-1,3-propanediamine and ethylenediamine at room temperature. The complex reacts with nitroethane and formaldehyde to yield the pentaaza macrocyclic complex $[NiL^2]^{2+}$ ($L^2$ = 8-methyl-8-nitro-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one C-$NO_2$ pendant arm. The reduction of $[NiL^2]^{2+}$ by using Zn/HCl produces $[NiL^3(H_2O)]^{2+}$ ($L^3$ = 8-amino-8-methyl-1,3,6,10,13-pentaazabicyclo[13.3.1]heptadecane) bearing one coordinated C-$NH_2$ pendant arm that is readily protonated in acid solutions. The hexaaza macrocyclic complex $[NiL^4]^{2+}$ ($L^4$ = 8-phenylmethyl-8-nitro-1,3,6,8,10,13-hexaazabicyclo[13.3.1]heptadecane) bearing one N-$CH_2C_6H_5$ pendant arm has also been prepared by the reaction of $[NiL^1]^{2+}$ with benzylamine and formaldehyde. The nickel(II) complexes of $L^1$, $L^2$, and $L^4$ have square-planar coordination geometry in the solid states and in nitromethane. However, they exist as equilibrium mixtures of the square-planar $[NiL]^{2+}$ (L = $L^1$, $L^2$, or $L^4$) and octahedral $[NiL(S)_2]^{2+}$ species in various coordinating solvents (S); the proportion of the octahedral species $[NiL(S)_2]^{2+}$ is strongly influenced by the ligand structure and the nature of the solvent. Synthesis, spectra, and chemical properties of the nickel(II) complexes of $L^1-L^4$ are described.

Template Synthesis and Characterization of Host (Nanocavity of Zeolite Y)-Guest ([Cu([18]aneN4S2)]2+, [Cu([20]aneN4S2)]2+, [Cu(Bzo2[18]aneN4S2)]2+, [Cu(Bzo2[20]aneN4S2)]2+) Nanocomposite Materials

  • Salavati-Niasari, Masoud;Mirsattari, Seyed Nezamodin;Saberyan, Kamal
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.2
    • /
    • pp.348-354
    • /
    • 2009
  • Copper(II) complexes with tetraoxo dithia tetraaza macrocyclic ligands; [18]ane$N_4S_2$: 1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, [20]ane$N_4S_2$: 1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane,Bzo2[18]ane$N_4S_2$: dibenzo-1,4,10,13-tetraaza-5,9,14,18-tetraoxo-7,16-dithia-cyclooctadecane, Bzo2[20]ane$N_4S_2$: dibenzo-1,5,11,15-tetraaza-6,10,16,20-tetraoxo-8,18-dithia-cyclocosane; were entrapped in the nanopores of zeolite-Y by a two-step process in the liquid phase: (i) adsorption of [bis(diamine)copper(II)] (diamine = 1,2-diaminoethane, 1,3-diaminopropane, 1,2-diaminobenzene, 1,3-diaminobenzene); $[Cu(N-N)_2]^{2+}$-NaY; in the nanopores of the zeolite, and (ii) in situ template condensation of the copper(II) precursor complex with thiodiglycolic acid. The obtained complexes and new host-guest nanocomposite materials; $[Cu([18]aneN_4S_2)]^{2+}-NaY,\;[Cu([20]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[18]aneN_4S_2)]^{2+}-NaY,\;[Cu(Bzo_2[20]aneN_4S_2)]^{2+}$-NaY; have been characterized by elemental analysis FT-IR, DRS and UV-Vis spectroscopic techniques, molar conductance and magnetic moment data, XRD and, as well as nitrogen adsorption. Analysis of data indicates all of the complexes have been encapsulated within nanopore of zeolite Y without affecting the zeolite framework structure.

Template Synthesis, Crystal Structure, and Magnetic Properties of a Dinuclear Copper(II) Complex with Cooperative Hydrogen Bonding

  • Kang, Shin-Geol;Nam, Kwang-Hee;Min, Kil-Sik;Lee, Uk
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.3
    • /
    • pp.1037-1040
    • /
    • 2011
  • The dinuclear complex 1 with cooperative hydrogen bonds can be prepared by the metal-directed reaction of Eq. (2). This work shows that the coordinated hydroxyl group trans to the secondary amino group is deprotonated more readily than that trans to the tertiary amino group and acts as the hydrogen-bond accepter. The lattice water molecules in 1 act as bridges between the two mononuclear units through hydrogen bonds. The complex is quite stable as the dimeric form even in various polar solvents. The complex exhibits a weak antiferromagnetic interaction between the metal ions in spite of relatively long Cu$\cdots$Cu distance. This strongly supports the suggestion that the antiferromagnetic behavior is closely related to the cooperative hydrogen bonds.

Syntheses and Properties of New Nickel(II) Complexes of 14-Membered Pentaaza Macrocyclic Ligands with C-Nitro and N-Alkyl Pendant Arms

  • Kang, Shin-Geol;Choi, Jang-Sik
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.5
    • /
    • pp.374-378
    • /
    • 1994
  • Square planar nickel(II) complexes with various 1-alkyl derivatives of the 14-membered pentaaza macrocycle 8-methyl-8-nitro-1,3,6,10,13-pentaazacyclotetradecane can be readily prepared by two-step metal template condensation reactions of ethylenediamine, nitroethane, formaldehyde, and appropriate primary alkylamines. In coordinating solvents the nickel (II) complexes form octahedral species containing two axially coordinated solvent molecules and thus show square planar-octahedral equilibrium. The properties of the pentaaza macrocyclic complexes are considerably different from those of the complexes of analogous hexaaza and tetraaza macrocyclic complexes. Synthesis, characterization, and spectroscopic and chemical properties of the new complexes are described.

Synthesis and Characterization of New Nickel (II) and Copper (II) Complexes of the Hexaaza Macrobicyclic Ligand 8-Methyl-1,3,6,8,10,13-hexaazabicyclo[11,2,1] hexadecane

  • Kang, Shin-Geol;Jung, Soo-Kyung;Kweon, Jae-Keun
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.5
    • /
    • pp.431-434
    • /
    • 1990
  • Template condensation reaction of diethylenetriamine, ethylenediamine, methylamine, and formaldehyde in the presence of Ni(II) or Cu(II) ion yields new saturated hexaaza macrobicyclic complexes $[Ni(C)]^{2+}\;and\;[Cu(C)]^{2+}$, where C is 8-methyl-1,3,6,8,10,13-hexaazabicyclo[11,2,1]hexad ecane. The macrobicyclic complexes contain one 1,3-diazacyclopentane ring and one methyl pendant arm in the ligand C and have square planar geometry with 5-6-5-6 chelate ring sequence. Synthesis, characterization, and the properties of the macrobicyclic complexes are described.

Studies on Reactions of a Nickel Complex of a New Completely Conjugated Macrocyclic Ligand

  • Park, Young-Ae W.;Oh, Soon-Song
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.6
    • /
    • pp.476-479
    • /
    • 1987
  • The macrocyclic nickel complex of the molecular formula[Ni($C_{32}H_{26}N_4$)] has been synthesized from the template condensation reaction between 1-benzoylacetone and o-phenylenediamine in the presence of nickel acetate. Protonation and deuterium exchange reactions of the demetallated macrocyclic ligand and the nickel complex have been carried out. The infrared, electronic and proton magnetic resonance spectral data of both compounds are compared and discussed; protonation of the macrocyclic ligand take place at the nitrogen atoms and all the amine protons undergo very rapid deuterium exchange while the methine protons undergo very slow exchange. On the other hand, protonation of the nickel complex occurs at the nitrogen atoms and only amine protons undergo rapid deuterium exchange. Protonation and deprotonation of the nickel complexes proceed reversibly.

Electrostatic and Hydrophobic on Recognition and Deacylation of an Anionic Ester by Ni(II)-Macrocyclic Complexes Built on Poly(ethylenimine)

  • Suh, Jung-Hun;Kim, No-Won
    • Bulletin of the Korean Chemical Society
    • /
    • v.14 no.2
    • /
    • pp.292-294
    • /
    • 1993
  • Three derivatives of poly(ethylenimine) (PEI) are prepared by Ni(II)-template condensation with glyoxal(GO): PEI[Ni(II)-GO]$_{0.08}$ (1), PEI[Ni(II)-GO]$_{0.03}$ (2), and lau$_{0.18}$PEI[Ni(II)-GO]$_{0.03}$ (3). The contents of Ni(II)-macrocyclic center of 1-3 are 8%, 3%, or 3%, respectively, of the monomer residues, and 18% of monomer residues for 3 are laurylated. The pH profiles for k$_{cal}$ and k$_m$ for the deacylation of 4-carboxy-2-nitrophenyl acetate are measured. The relative magnitude of the parameters for 1-3 and different shapes of the pH profiles for 1-3 are explained in terms of the electrostatic and the hydrophobic effects exerted by the metal centers and lauryl groups. For the artificial metalloenzymes built on PEI, therefore, the ionization of functional groups and the affinity toward counter-anions can be controlled by adjusting charge density and the content of hydrophobic groups.

Template Synthesis and Characterization of Four- and Five-Coordinate Copper(II) Complexes with Hexaaza Macrotricyclic Ligands 1,3,6,9,11,14-Hexaazatricyclo $[12.2.1.1^{6,9}]octadecane(L_1)$ and 1,3,6,10,12,15-Hexaazatricyclo $[13.3.1.1^{6,10}]eicosane(L_1)$

  • Myunghyun Paik Suh;Shin-Geol Kang;Teak-Mo Chung
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.3
    • /
    • pp.206-208
    • /
    • 1990
  • Cu(II) hexaazamacrotricyclic complexes $[Cu(L)](ClO_4)_2$ and $[(Cu(L)Cl]ClO_4$, where L = 1,3,6,9,11,14-hexaazatricyclo$[12.2.1.1^{6,9}]octadecane(L_1)$ or 1,3,6,10,12,15-hexaazatricyclo$[13.3.1.1^{6,10}]eicosane(L_2)$, have been prepared by the simple template condensation reactions of triamines, diethylenetriamine for $L_1$, and N-(2-aminoethyl)-1,3-propanediamine for $L_2$, with formaldehyde in the presence of $Cu(OAc)_2\;or\;CuCl_2$. The Cu(II) complexes of $L_1$ contain two 1,3-diazacyclopentane ring moieties and those of $L_2$ contain two 1,3-diazacyclohexane ring moieties that are fused to the 14-membered macrocyclic framework. Spectra indicate that complexes $[Cu(L)](ClO_4)_2\;and\;[Cu(L)Cl]ClO_4$ have square-planar and square-pyramidal chromophores, respectively. square-planar $[Cu(L)](ClO_4)_2$ are remarkably stable against ligand dissociation in acidic aqueous solutions. Square-pyramidal $[Cu(L)Cl]ClO_4$ complexes dissociate their axial Cl-ligands easily in aqueous solutions to form $[Cu(L)H_2O]^{2+}$ species. Infrared and UV/vis absorption spectra of the Cu(II) complexes reveal that Cu-N interactions and the ligand field strengths are significantly weaker in the complexes of $L_2$ than in the complexes of $L_1$.

New Unsymmetric Dinuclear Copper(II) Complexes of Trans-disubstituted Cyclam Derivatives: Spectral, Electrochemical, Magnetic, Catalytic, Antimicrobial, DNA Binding and Cleavage Studies

  • Prabu, R.;Vijayaraj, A.;Suresh, R.;Jagadish, L.;Kaviyarasan, V.;Narayanan, V.
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.5
    • /
    • pp.1669-1678
    • /
    • 2011
  • Six new binuclear copper(II) complexes have been prepared by template condensation of the dialdehydes 1,8-[bis(3-formyl-2-hydroxy-5-methyl)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-a) and 1,8-[bis(3-formyl-2-hydroxy-5-bromo)benzyl]-l,4,8,11-tetraazacyclotetradecane (PC-b) with appropriate aliphatic diamines, and copper(II) perchlorate. The structural features of the complexes have been confirmed by elemental analysis, IR, UV-vis and mass spectra etc. The electrochemical behavior of all the copper(II) complexes show two irreversible one electron reduction process. The room temperature magnetic moment studies depict the presence of an antiferromagnetic interaction in the binuclear complexes. The catechol oxidation and hydrolysis of 4-nitrophenylphosphate were carried out by using the complexes as catalyst. The antimicrobial screening data show good results. The binding of the complexes to calf thymus DNA (CT DNA) has been investigated with absorption and emission spectroscopy. The complex [$Cu_2L^{1a}$] displays significant cleavage property of circular plasmid pBR322 DNA in to linear form. Spectral, electrochemical, magnetic and catalytic studies support the distortion of the copper ion geometry that arises as the macrocyclic ring size increases.

A Kinetic Study on the Synthesis of Dimethylcarbonate by Using Immobilized Ionic Liquid Catalyst (고정화된 이온성 액체 촉매를 이용한 디메틸카보네이트 합성 반응에 대한 속도론적 고찰)

  • Kim, Dong-Woo;Kim, Dong-Kyu;Kim, Cheol-Woong;Koh, Jae-Cheon;Park, DaeWon
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.332-336
    • /
    • 2010
  • Ionic liquid immobilized on mesoporous amorphous silica was prepared from the coupling of 1-(triethoxysilylpropyl)-3-n-alkyl-imidzolium halides with tetraethyl orthosilicate(TEOS) through template-free condensation under strong acidic conditions. The immobilized 1-n-butyl-3-methyl imidazolium bromide ionic liquid on amorphous silica(BMImBr-AS) was proved to be an effective heterogeneous catalyst for the synthesis of dimethyl carbonate(DMC) from transesterification of ethylene carbonate(EC) with methanol. High temperature, high carbon dioxide pressure and long reaction time were favorable for the reactivity of BMImBr-AS. Kinetic studies based on two step reactions revealed that the proposed reaction model fitted well the experimental data. The apparent activation energy was estimated to be 67.4 kJ/mol.