The Journal of the Convergence on Culture Technology
/
v.4
no.1
/
pp.291-297
/
2018
In this paper, we present an automatic image object tracking system for Studio cameras on the stage. For object tracking, we use the OpenCV-based Python program using PC, Raspberry Pi 3 and mobile devices. There are many methods of image object tracking such as mean-shift, CAMshift (Continuously Adaptive Mean shift), background modelling using GMM(Gaussian mixture model), template based detection using SURF(Speeded up robust features), CMT(Consensus-based Matching and Tracking) and TLD methods. CAMshift algorithm is very efficient for real-time tracking because of its fast and robust performance. However, in this paper, we implement an image object tracking system for studio cameras based CMT algorithm. This is an optimal image tracking method because of combination of static and adaptive correspondences. The proposed system can be applied to an effective and robust image tracking system for continuous object tracking on the stage in real time.
In this paper, we propose a pulmonary nodule registration for the tracking of lung nodules in sequential CT scans. Our method consists of following five steps. First, a translational mismatch is corrected by aligning the center of optimal bounding volumes including each segmented lung. Second, coronal maximum intensity projection(MIP) images including a rib structure which has the highest intensity region in baseline and follow-up CT series are generated. Third, rigid transformations are optimized by normalized average density differences between coronal MIP images. Forth, corresponding nodule candidates are defined by Euclidean distance measure after rigid registration. Finally, template matching is performed between the nodule template in baseline CT image and the search volume in follow-up CT image for the nodule matching. To evaluate the result of our method, we performed the visual inspection, accuracy and processing time. The experimental results show that nodules in serial CT scans can be rapidly and correctly registered by coronal MIP-based rigid registration and local template matching.
Recently, there is an increasing need for developing the technique of Hand Gesture Recognition (HGR), for vision based interface. Since hand gesture is defined as consecutive change of hand posture, developing the algorithm of Hand Posture Recognition (HPR) is required. Among the factors that decrease the performance of HPR, we focus on rotation factor. To achieve rotation invariant HPR, we propose a method that uses the property of video that adjacent frames in video have high correlation, considering the environment of HGR. The proposed method introduces template update of object tracking using the above mentioned property, which is different from previous works based on still images. To compare our proposed method with previous methods such as template matching, PCA and LBP, we performed experiments with video that has hand rotation. The accuracy rate of the proposed method is 22.7%, 14.5%, 10.7% and 4.3% higher than ordinary template matching, template matching using KL-Transform, PCA and LBP, respectively.
Journal of Institute of Control, Robotics and Systems
/
v.20
no.12
/
pp.1259-1266
/
2014
Road signs provide important safety information about road and traffic conditions to drivers. Road signs include not only common traffic signs but also warning information regarding unexpected obstacles and road constructions. Therefore, accurate detection and identification of road signs is one of the most important research topics related to safe driving. In this paper, we propose a 3-D vision technique to automatically detect and track road signs in a video sequence which is acquired from a stereo vision camera mounted on a vehicle. First, color information is used to initially detect the sign candidates. Second, the SVM (Support Vector Machine) is employed to determine true signs from the candidates. Once a road sign is detected in a video frame, it is continuously tracked from the next frame until it is disappeared. The 2-D position of a detected sign in the next frame is predicted by the 3-D motion of the vehicle. Here, the 3-D vehicle motion is acquired by using the 3-D pose information of the detected sign. Finally, the predicted 2-D position is corrected by template-matching of the scaled template of the detected sign within a window area around the predicted position. Experimental results show that the proposed method can detect and track many types of road signs successfully. Tracking comparisons with two different methods are shown.
Proceedings of the Korea Water Resources Association Conference
/
2015.05a
/
pp.79-79
/
2015
현재 홍수 시 유량조사에 가장 많이 사용하고 있는 부자법은 측정 인력, 측정비용 및 위험성이 높다는 단점이 있다. 또한 교량에서 부자를 투하하고 측면에서 부자의 이동을 추적하기 때문에 평면상의 이동에 대한 정보를 얻기 어렵다는 한계가 있다. 이에 김서준 등(2014)은 PTV 기법을 이용한 부자 추적 알고리즘을 개발하였으나 부자가 회전하거나 물속에 잠기는 부분이 변화하여 수면 위로 확인되는 부자의 길이가 변할 경우 추적이 어렵다는 한계가 있었다. 이를 개선하고자 본 연구에서는 Template Match 알고리즘과 색상 기반 영상 처리 기법을 이용한 목표물 인식 방법인 Camshift 기법을 적용하여 부자를 추적할 수 있는 알고리즘을 개발하였다. Template Match 알고리즘의 경우는 입자가 많을수록 추적을 잘한다는 장점이 있지만 회전 및 변형에 취약하다는 단점이 있고, Camshift 영상 처리 기법의 경우 다수의 추적자가 존재할 경우 추적에 어려움이 있으나 추적자의 회전과 변형을 정확하게 추적할 수 있다는 장점이 있다. 따라서 Template Match 알고리즘을 이용하여 이동 예상영역을 결정하고 Camshift 영상 처리 기법으로 추적을 하게되면 두 방법의 장점을 모두 살릴 수 있다. Camshift 영상 처리 기법을 실제 부자 추적에 적용해 본 결과 부자의 회전 및 변형에도 정확하게 추적할 수 있는 것을 확인하였다. 향후 부자법을 이용한 유량 조사에 본 연구에서 개발한 알고리즘을 적용한다면 현장에서 동영상 촬영만 하면 되기 때문에 측정 인원을 최소화 할 수 있어 매우 경제적이고, 홍수 시 위험성도 감소할 것으로 기대된다.
Journal of the Institute of Electronics Engineers of Korea SP
/
v.45
no.1
/
pp.75-83
/
2008
We propose a welfare interface using multiple fecial features tracking, which can efficiently implement various mouse operations. The proposed system consist of five modules: face detection, eye detection, mouth detection, facial feature tracking, and mouse control. The facial region is first obtained using skin-color model and connected-component analysis(CCs). Thereafter the eye regions are localized using neutral network(NN)-based texture classifier that discriminates the facial region into eye class and non-eye class, and then mouth region is localized using edge detector. Once eye and mouth regions are localized they are continuously and correctly tracking by mean-shift algorithm and template matching, respectively. Based on the tracking results, mouse operations such as movement or click are implemented. To assess the validity of the proposed system, it was applied to the interface system for web browser and was tested on a group of 25 users. The results show that our system have the accuracy of 99% and process more than 21 frame/sec on PC for the $320{\times}240$ size input image, as such it can supply a user-friendly and convenient access to a computer in real-time operation.
Kim, Do-Hyung;Lee, Seon-Hwa;Lee, Hack-Man;Cha, Eui-Young
Annual Conference of KIPS
/
2000.10a
/
pp.247-250
/
2000
본 논문에서는 다양한 배경을 가지는 연속적인 얼굴 영상에서 실시간으로 눈의 위치를 자동적으로 추출하는 방법에 대하여 제시한다. 얼굴 요소 중에서 눈은 얼굴 인식 분야에 있어서 중요한 특징을 나타내는 주 요소로써 주로 히스토그램 분석과 색상 정보를 이용하여 눈 영역의 윤곽을 추출하는 방법이 제기되고 있다. 본 논문에서는 명암의 변화에도 비교적 적응력이 강한 이진화 기법을 사용하여 원영상을 이진화하고, 가변 템플릿(Deformable Template)방법을 사용하여 후보 영역을 추출한다. 이러한 후보영역들은 ART2 신경회로망을 이용하여 병합되며, 병합된 후보 영역들은 얼굴 요소의 기하학적 사전지식을 기반으로 검증되어, 시간에 따라 모양변화가 급변하는 눈 영역에 대한 실시간 추출을 가능하게 한다. 이상의 연구 결과는 교통사고 방지를 위한 눈의 졸림감지 등의 응용 시스템에 이용될 수 있다.
Journal of Korea Society of Industrial Information Systems
/
v.20
no.2
/
pp.45-56
/
2015
In this paper we propose a very rapid moving object tracking method for an object-based auto focus on a smart phone camera. By considering the limit of non-learning approach on low-performance platforms, we use a sliding-window detection technique based on histogram features. By adapting the integral histogram, we solve the problem of the time-consuming histogram computation on each sub-window. For more speed up, we propose a local candidate search, and an adaptive scaling template method. In addition, we propose to apply a stabilization term in the matching function for a stable detection location. In experiments on our dataset, we demonstrated that we achieved a very rapid tracking performance demonstrating over 100 frames per second on a PC environment.
The kernelized correlation filter algorithm yielded meaningful results in accuracy for object tracking. However, because of the use of a fixed size template, we could not cope with the scale change of the tracking object. In this paper, we propose a method to track objects by finding the best scale for each frame using correlation filtering response values in multi-scale using nearest neighbor interpolation and Gaussian normalization. The scale values of the next frame are updated using the optimal scale value of the previous frame and the optimal scale value of the next frame is found again. For the accuracy comparison, the validity of the proposed method is verified by using the VOT2014 data used in the existing kernelized correlation filter algorithm.
Journal of the Korea Institute of Information and Communication Engineering
/
v.8
no.6
/
pp.1182-1187
/
2004
Robust, real-time, fully automatic tracking of facial features is required for many computer vision and graphics applications. In this paper, we describe a fully automatic system that tracks eyes and eyebrows in real time. The pupils are tracked using the red eye effect by an infrared sensitive camera equipped with infrared LEDs. Templates are used to parameterize the facial features. For each new frame, the pupil coordinates are used to extract cropped images of eyes and eyebrows. The template parameters are recovered by PCA analysis on these extracted images using a PCA basis, which was constructed during the training phase with some example images. The system runs at 30 fps and requires no manual initialization or calibration. The system is shown to work well on sequences with considerable head motions and occlusions.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.