• 제목/요약/키워드: Tempering temperature

검색결과 168건 처리시간 0.024초

열간 단조 공정의 금형 수명 평가 (Evaluation of die life during hot forging process)

  • 이현철;박태준;고대철;김병민
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1997년도 추계학술대회 논문집
    • /
    • pp.1051-1055
    • /
    • 1997
  • Hot forging is widely used in the manufacturing of automotive component. The mechanical, thermal load and thermal softening which is happened by the high temperature die in hot forging. Tool life of hot forging decreases considerably due to the softening of the surface layer of a tool caused by a high thermal load and long contact time between the tool and workpieces. The service life of tools in hot forging process is to a large extent limited by wear, heat crack, plastic deformation. These are one of the main factors affecting die accuracy and tool life. It is desired to predict tool life by developing life prediction method by FE-simulation. Lots of researches have been done into the life prediction of cold forming die, and the results of those researches were trustworthy, but there have been little applications of hot forming die. That is because hot forming process has many factors influencing tool life, and there was not accurate in-process data. In this research, life prediction of hot forming die by wear analysis and plastic deformation has been carried out. To predict tool life, by experiment of tempering of die, tempering curve was obtained and hardness express a function of main tempering curve.

  • PDF

펄스 자기장을 이용한 잔류 응력 완화 연구 (A Study on the Stress Relief by Pulse Magnetic Treatment)

  • 오주숙;양원존;이종훈;박용호
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.149-155
    • /
    • 2011
  • Residual stress relief by pulse magnetic treatment is attractive because the process is carried out at room temperature and magnetic fields that are easy to produce and control can be used. This study shows that strong pulse magnetic treatment can lead to stress relaxation of structural steels instead of a conventional heat treatment process. And it makes a comparative study about pulse magnetic treatment and tempering by using Larson-Miller equation. When the specimen was subjected to a pulse magnetic treatment process the residual stress in the specimen was reduced by about 13.8%. It could be compared with tempering at $200^{\circ}C$ for 2hours by using thermal effect of Larson-Miller equation. As a result, it is considered that the pulsed magnetic treatment have an effect of the stress relation by tempering at $200^{\circ}C$ for 2 hours.

진공증착법으로 제작한 Ag-X(X=Cu,Ni,C) 합금의 기계적 성질에 관한 연구 (A Study on the Mechanical Properties of Ag-X(X=Cu,Ni,C) Alloys Prepared by the Vacuum-deposition Technique)

  • 오창섭;한창석
    • 열처리공학회지
    • /
    • 제24권5호
    • /
    • pp.243-250
    • /
    • 2011
  • When alloys are vacuum-deposited on cooled substrates, super-rapidly cooled alloy films in the unequilibrium state can be obtained. As an application of this method, Ag-Cu, Ag-Ni and Ag-C alloys were successfully produced, and their mechanical properties with tempering temperature were investigated. The following results were obtained : (1) In case of Ag-Cu alloys, the solid solution was hardened by tempering at $150^{\circ}C$. The hardening is considered to occur when the solid solution begins to decompose into ${\alpha}$ and ${\beta}$ phases. The Knoop hardness number of a 40 at.%Ag-Cu alloy film deposited on a cooled glass substrate was 390 $kg/mm^2$. The as-deposited films were generally very hard but fractured under stresses below their elastic limits. (2) In case of Ag-Ni and Ag-C alloys, after the tempering of 4 at.%Ni-Ag alloy at $400^{\circ}C$ and of 1 and 2 at.%C-Ag alloys at $200^{\circ}C$, they were hardened by the precipitation of fine nickel and carbon particles. The linear relationship between proof stress vs. $(grain\;diameter)^{-l/2}$ for bulk silver polycrystals can be applied to vacuum-deposited films up to about 0.1 ${\mu}m$ grain diameter, but the proof stress of ultra-fine grained silver with grain diameters of less than 0.1 ${\mu}m$ was smaller than the value expected from the Petch's relation.

조질 후 Roll Mill과 Pin Mill의 제분 및 쌀가루의 특성 (Properties of Rice Flour Prepared with Roll Mill and Pin Mill after Tempering)

  • 김형열;이병영;유효숙;최중경;함승시
    • 한국식품저장유통학회지
    • /
    • 제6권3호
    • /
    • pp.313-318
    • /
    • 1999
  • 쌀을 수분함량 24%로 10시간 동안 조질한 후 roll mill로 1회 분쇄한 후 pin mill로 1회 분쇄하였을 때 의 특성을 조사하였다. 소요전력은 다른 제분방법(TRMR, WDRMR, DPMR) 보다 가장 적었다. 쌀가루의 수분함량은 수침하여 제분한 쌀가루의 32.8%, 조질하여 제분한 쌀가루의 22.3%보다 훨씬 적은 17.2%였다. 쌀가루의 입도는 100 mesh 이상의 입자가 87.4%로 수침 roll mill 쌀가루 6.8%와 조질 roll mill 쌀가루 7.7%보다는 훨씬 높았고 건식 pin mill 쌀가 루의 80%보다도 높았다. 전자현미경으로 본 쌀가루의 입자구조를 살펴본 결과 수침한 쌀과 조질한 쌀의 분쇄된 쌀가루 입자 한 개는 수많은 작은 입자들이 모여 덩어리 모양의 입단(粒團, group)을 형성하고 있었다. 호화 개시온도는 63.2$^{\circ}C$로 다른 방법으로 제분한 쌀가루보다 1.3$^{\circ}C$ 낮았다. 최고점도, 최저점도, 냉각시 5$0^{\circ}C$에서의 점도도 다른 방법으로 제분한 쌀가루보다 낮았다. 이 방법으로 쌀을 제분하면 밀가루와 같이 고우며 백도가 높고 품질이 좋은 쌀가루 제품을 얻을 수 있었다.

  • PDF

딜라토미터를 이용한 STD11 공구강의 오스테나이징 및 템퍼링 열처리에 따른 치수 변화 이방성 연구 (Study on the Anisotropic Size Change by Austenitizing and Tempering Heat Treatment of STD11 Tool Steel Using Dilatometry)

  • 홍기정;강원국;송진화;정인상;이기안
    • 대한금속재료학회지
    • /
    • 제46권12호
    • /
    • pp.800-808
    • /
    • 2008
  • Heat treatment is an important step for tool manufacture, but unavoidably generates dimensional distortion. This study investigated the continuous dimensional change and the anisotropic behavior of STD11 tool steel during austenitizing and tempering heat treatment especially using quenching dilatometer. Dilatometric results represented that the dimensional change along longitudinal direction was larger than that along transverse direction. Anisotropic phase transformation strain was produced in forged STD11 tool steel during heat treatment. Anisotropic dimensional change increased with increasing austenitizing temperature. After tempering, anisotropic distortion was partially reduced. FactSage thermodynamic equilibrium phase simulation and microstructural observation (FE-SEM, TEM) showed that large ($7{\sim}80{\mu}m$) elongated $M_7C_3$ carbides could be formed along rolling direction. The resolution of elongated carbides during austenitizing was found to be related with the change of martensite transformation temperature after heat treatment. Anisotropic size change of STD11 tool steel was mainly attributed to large elongated carbides produced during rolling process. Using dilatometric and metallographic examination, the possible mechanism of the anisotropic size change was also discussed.

1 wt.% Bi 함유 무연황동의 인장강도와 내식특성에 대한 연구 (Characteristics of Tensile Strength and Corrosion Resistance of Lead- free Brass Containing 1 wt.% of Bi)

  • 주영석;이상봉;김시영;주창식;정병호
    • 열처리공학회지
    • /
    • 제24권3호
    • /
    • pp.133-139
    • /
    • 2011
  • This study has been investigated for tensile properties with lead-free brass containing 1 wt.% of Bi. And also characteristic of corrosion resistance was analyzed by polarization test. An increase of tempering temperature was found to tend to decrease tensile strength, and percentage of elongation was shown to be the lowest value at $300^{\circ}C$. On the other hand, the elongation was increased with an increase of tempering temperature after $300^{\circ}C$. The change of mechanical properties was closely related with the content and shape of acicular Witmanst$\ddot{a}$tten ${\alpha}$ formed at the interface of ${\beta}$ phase as well as in ${\beta}$ phase. Tensile strength had a tendency to be decreased with an increase of test temperature. The elongation was shown to be the lowest value at around $300^{\circ}C$, while it began to increase as test temperature rose after $300^{\circ}C$. It might be speculated that the reason that elongation was decreased was found to form bismuth film at the interface of ${\alpha}/{\beta}$ phase leading to be easily brittle when loaded by tensile stress. The lead-free brass containing 1 wt.% of Bi had similar characteristic of corrosion resistance with a free-cutting brass with 3.4 wt. % of Pb in spite of higher fraction of ${\beta}$ phase.

고주파 열처리 온도에 따른 선조질강의 인장특성 (Tensile Properties of Energy Saving Wire (ESW) with respect to Temperatures of High Frequency Induction Heat Treatment)

  • 이진범;강남현;박지태;안순태;박영도;최일동;남대근;조경목
    • 대한금속재료학회지
    • /
    • 제48권11호
    • /
    • pp.974-980
    • /
    • 2010
  • Various types of steel, namely, 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels, were quenched and tempered by high-frequency induction heat treatment. The type, size, and spheroidization of the carbides varied depending on the tempering temperatures ($450{\sim}720^{\circ}C$). During the tempering process, the carbide was precipitated in the martensite matrix. The 0.35C, 0.2C-Cr, and 0.2C-Cr-Mo steels contained carbides that were smaller than 120 nm. The carbide was spheroidized as the tempering temperature increased. Owing to the fine microstructure and spheroidization of the carbides, all three steels had a high tensile strength as well as yield ratio and reduction of area. In the case of the 0.2C-Cr steel, the use of Cr as an alloying element facilitated the precipitation of alloyed carbides with an extremely small particle and resulted in an increase in the spheroidization rate of the carbides. As a result, a large reduction of area was achieved (>70%). The 0.2C-Cr-Mo steel had the highest tensile strength because of the high hardenability that can be attributed to the presence of alloying elements (Cr and Mo). Quenching and tempering steels by induction heat treatment resulted in a high strength of over 1 GPa and a large reduction of area (>70%) because of the rapid heating and cooling rates.

크롬주철의 기계적 성질에 미치는 합금원소(V,Ti)와 열처리의 영향에 관한 연구 (The Study on the Effect of Alloying Elements(V,Ti) and Heat Treatment on the Mechanical Properties in Chromium Cast Iron)

  • 김석원;김동건;이의권;장호열
    • 한국주조공학회지
    • /
    • 제12권6호
    • /
    • pp.450-457
    • /
    • 1992
  • The study aims to investigate the influence of alloying elements(V,Ti) and heat treatment on the mechanical properties in hypo-eutectic chromium cast iron. Before heat treatment, all of the specimen were fully annealed(950$^{\circ}C{\times}5Hr$) to homogenize their structures. The influence of heat treatment and alloying elements(V,Ti) on hardness, retained austenite volume, and charpy impact energy as well as tensile strength of the specimen was tested systematically. Retained austenite decreased with the increase of V and Ti, but incresed with the increase of number of cycles. The impact energy decreased, and hardness and tensile strength increased with the increase of alloying elements (V,Ti) and the decrease of the number of cycles. The hardness and tensile strength increased, but impact energy decreased with the increase of V and Ti elements and the temperature of destabillization heat treatment. After the destabillization heat treatment at the same temperature, the impact energy is increased, while hardness and tensile strength decreased as the increase of tempering temperature. Retained austenite increased with increase of destabilizatoin heat treatment temperature, while decrease with the increase of tempering temperature.

  • PDF

12Cr 마르텐사이트계 내열강의 감쇠능에 미치는 미세조직의 영향 (Effect of Microstructure on the Damping Capacity of 12Cr Martensitic Heat-resisting Steel)

  • 이상명;강창룡
    • 동력기계공학회지
    • /
    • 제14권2호
    • /
    • pp.78-83
    • /
    • 2010
  • This study was carried out to investigate the effect of microstructure on the damping capacity of 12Cr martensite heat-resisting steels, in case of the specimen with martensite phase contained the volume faction of ferrite phases, under 5%. The damping capacity was decreased with the increase of solution treatment temperature and time. While it was increased with the increase of tempering temperature and time. The damping capacity was higher in case of specimen with martensite single phase structure than the specimen with martensite phase contained of ferrite phases.

마멸에 의한 온간단조의 금형수명 예측에 관한 연구(I) -금형 마멸 모델의 정립- (A Study on Prediction of Die Life of Warm Forging by Wear(I) -Construction of Die Wear Model-)

  • 강종훈;박인우;제진수;강성수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.88-93
    • /
    • 1998
  • The service life of tools in metal forming process is to a large extent limited by wear, fatigue fracture and plastic deformation. In warm forging processes wear is the predominant factor for operating lives of tools. To predict tool life by wear, Archard's wear model is generally applied. Usually hardness of die is considered to be a function of temperature in Archard's wear model. But hardness of die is a function of not only temperature but also operating time of die. To consider softening of die by repeated operations, it is necessary to express hardness of dies by a function of temperatures and operating time. By experiment of reheating of dies, die softening curves were obtained. Finally modified Archard's wear model in which hardness of die was expressed as a function of main tempering curve was proposed.

  • PDF