• Title/Summary/Keyword: Tempered steel

Search Result 153, Processing Time 0.025 seconds

Effect of Vacuum Heat Treatment on Mechanical Properties of Carburized STD61 Steel (침탄된 STD61강의 기계적 성질에 미치는 진공열처리의 영향)

  • Kim, Kyung-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.30 no.1
    • /
    • pp.17-20
    • /
    • 2017
  • Mechanical properties of STD61 steel are compared with those of carburized STD61 steel when both are quenched and tempered in vacuum heat treatment. Mechanical properties of carburized STD61 steel are improved better than STD61 steel in hardness, tensile strength, impact energy and wear resistance.

Comparative Study of Microstructure and Tensile Properties of 600 and 700 MPa-Grade High-Strength Seismic Resistant Reinforced Steel Bars (내진용 600 및 700 MPa 급 고강도 철근의 미세조직과 인장 특성 비교)

  • Hong, T.W.;Lee, S.I.;Lee, J.H.;Shim, J.H.;Lee, M.G.;Hwang, B.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.281-288
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 600 and 700 MPa-grade high-strength seismic reinforced steel bars. High-strength seismic resistant reinforced steel bars (SD 600S and SD 700S) were fabricated by TempCore process, especially the SD 700S specimen was more rapid cooled than the SD 600S specimen during the TempCore process. Although two specimens had microstructure of tempered martensite in the surface region, the SD 600S specimen had ferrite-degenerated pearlite in the center region, whereas the SD 700S specimen had bainite-ferrite-degenerated pearlite in the center region. Therefore, their hardness was highest in the surface region and revealed a tendency to decrease from the surface region to the center region because tempered martensite has higher hardness than ferrite-degenerated pearlite or bainite. The SD 700S specimen revealed higher hardness in the center region than SD 600S specimen because it contained a larger amount of bainite as well as ferrite-degenerated pearlite. On the other hand, tensile test results indicated the SD 600S and SD 700S specimens revealed continuous yielding behavior because of formation of degenerated pearlite or bainite in the center region. The SD 600S specimen had a little higher tensile-to-yield ratio because the presence of ferrite and degenerated pearlite in the center region and the lower fraction of tempered martensite enhance work hardening.

Influence of Tempering Temperature and Microstructure on Wear Properties of Low Alloy PM Steel with 1-2% Ni Addition

  • Tekeli, Suleyman;Gural, Ahmet;Guru, Metin
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1004-1005
    • /
    • 2006
  • The effect of tempering temperature and microstructure on dry sliding wear behavior of quenched and tempered PM with 0.3% graphite and 1-2% Ni steels was investigated. The sintered specimens were quenched from $890^{\circ}C$ and then tempered at $200^{\circ}C$ and $600^{\circ}C$ for 1 hr. Wear tests were carried out on the quenched$\neq$tempered specimens under dry sliding wear conditions using a pin-on-disk type machine at constant load and speed. The experimental results showed that the wear coefficient effectively increased with increasing tempering temperature and decreased with increasing Ni content.

  • PDF

A Study on Forging Characteristic of Non-Heat Treated Micro-Alloyed Steel Using Finite Element Analysis (유한요소해석을 통한 비조질강 성형 특성 분석)

  • Kwon, Yong-Nam;Kim, S.W.;Lee, Y.S.;Lee, J.H.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.609-614
    • /
    • 2006
  • Micro-alloyed steels(MA steels) for cold forging was developed to replace the usual quenched and tempered steel. MA steels have several advantages over the conventional quenched and tempered carbon steels. First of all, energy consumption could be lowered due to the elimination of spherodizing annealing and quenching/tempering heat treatment. Also, bending during quenching could be avoided when MA steels are applied for manufacturing of long fastener parts. However, larger amount of load is exerted on the dies compared than in the case of conventional mild steels, which might lead to the earlier fracture of dies, when MA forging steels are applied in forging practice. Therefore, die lift could be a critical factor to determine whether HA forging steels could be widely applied in cold forging practice. In the present study, authors have investigated the forging characteristics of non-heat treated micro-alloyed steel by using a series of experimental and numerical analyses. Firstly, microstructural features and its effect on the deformation behavior have been studied. Numerical analysis has been done on the forging of guide rod pin to investigate for the optimization of forging process and die stress prediction.

The Effect of Tempering Temperature on Ultrasonic Velocity Property at the Quenched SCM 440 Steel (퀜칭한 SCM 440 강에서 초음파 전파특성에 미치는 템퍼링온도의 영향)

  • Lee, K.W.;Kim, M.I.;Park, U.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.3
    • /
    • pp.54-62
    • /
    • 1991
  • The effect of tempering temperature on the ultrasonic propagation velocity at SCM 440 steel quenched from $870^{\circ}C$ and $1000^{\circ}C$ has been studied by metallurgical and crystallographical observation. The measurements of ultrasonic velocity were made on the specimen by appling an immersion ultrasonic pulse-echo technique with a constant frequency of 10 MHz. The quenched microstructure of this steel was a lath martensite. As the tempering temperature was increased, the martensite was transformed into the tempered martensite composed of cementite and carbide. The ultrasonic velocity increased with increasing the tempering temperature. It was thought that these were resulted from the microstructural transformation. The change of ultrasonic propagation velocity with quenching and tempering heat treatment was resulted from microstrain due to the change of internal stress. Considering these results concerning to the change of ultrasonic propagation velocity. the phenomena of microstructural transformation were estimated. Consequently, it was thought that the degree of quenching and tempered heat treatment of steel could be nondestructively evaluated with the change of ultrasonic propagation velocity.

  • PDF

Analysis on Temper Embrittlement and Metastable Phase of Martensitic Stainless Steel (마르텐사이트계 스테인리스강의 템퍼 취성과 준안정상에 관한 분석)

  • Lee, Gil Jae;Choe, Byung Hak;Kim, Jae Hoon
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.34 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • The martensitic stainless steel has excellent corrosion resistance and higher strength by quenching and tempering heat treatment. It has been widely used as blade material due to these properties. The hardness and impact toughness of martensitic stainless steel depended strongly on tempering temperatures. The 12Cr martensite stainless steel (SS 410) tempered about 540℃ showed temper embrittlement. To know cause of temper embrittlement in terms of phase identification, a detailed analysis of electron diffraction patterns during TEM observations has been carried out on the <110>α-Fe and <113>α-Fe zone axes for temper embrittlement specimen. The double electron diffraction spots at 1/3(211) and 2/3(211) positions were observed. The lattice space between individual diffraction spots was about 3.5 Å and this value coincide with three times to α-bcc lattice space (1.17 Å). The area which found double diffraction spots was judged metastable "zone" similar to the omega phase and induced embrittlement of SS410 material.

Effects of Microstructural States on Magnetic Barkhausen Noise Behavior in the Weld Heat-Affected Zone of Reactor Pressure Vessel Steel (원자로압력용기강 용접열영향부의 미세조직 변화가 Magnetic Barkhausen Noise 거동에 미치는 영향)

  • Kim, Joo-Hag;Yoon, Eui-Pak;Moon, Jong-Gul;Park, Duck-Gun;Hong, Jun-Hwa
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.18 no.4
    • /
    • pp.292-303
    • /
    • 1998
  • Recent study has demonstrated that some magnetic properties are sensitive to the microstructural state of material. The ASTM A 508 Gr. 3 reactor pressure vessel steel has various microstructural changes including martensitic and bainitic phases, and various sizes of grain and precipitates in the weld heat-affected zone (HAZ). To correlate the microstructural state with Barkhausen noise (BN), specimens were prepared through simulating various weld thermal cycles using a thermal simulator. The conventional magnetic properties, i.e. coercive force, remanence and maximum induction, did not change significantly, whereas the BN amplitude and energy during a magnetization cycle changed markedly with microstructural state. The BN increased with increasing grain and carbide sizes, and the tempered bainite structure showed higher BN parameter than tempered martensite.

  • PDF

Effects of Microalloying Elements on Microstructures and Toughness of Simulated HAZ in Quenched and Tempered Steels

  • Chang, W.S.;Yoon, B.H.
    • International Journal of Korean Welding Society
    • /
    • v.3 no.2
    • /
    • pp.40-45
    • /
    • 2003
  • A series of experiments has been carried out to investigate the effect of titanium, boron and nitrogen on the microstructure and toughness of simulated heat affected zone (HAZ) in quenched and tempered (QT) type 490MPa yield strength steels. For acquiring the same strength level, the carbon content and carbon equivalent could be lowered remarkably with a small titanium and boron addition due to the hardenability effect of boron during quenching process. Following the thermal cycle of large heat input, the coarsened grain HAZ (CGHAZ) of conventional quenched and tempered (QT) type 490MPa yield strength steels exhibited a coarse bainitic or ferrite side plate structure with large prior austenite grains. While, titanium and boron bearing QT type 490MPa yield strength steels were characterized by the microstructure in the CGHAZ, consisting mainly of the fine intragranular ferrite microstructure. Toughness of the simulated HAZ was mainly controlled by the proper Ceq level, and the ratio of Ti/N rather than titanium and nitrogen contents themselves. In the titanium­boron added QT steels, the optimum Ti/N ratio for excellent HAZ toughness was around 2.0, which was much lower than the known Ti/N stoichiometric ratio, 3.4. With reducing Ti/N ratio from the stoichiometric ratio, austenite grain size in the coarse grained HAZ became finer, indicating that the effective fine precipitates could be sufficiently obtained even with lower Ti/N level by adding boron simultaneously. Along with typical titanium carbo­nitrides, various forms of complex titanium­ and boron­based precipitates, like TiN­MnS­BN, were often observed in the simulated CGHAZ, which may act as stable nuclei for ferrite during cooling of weld thermal cycles

  • PDF

The Change of Mechanical Properties on Weld Heat Input in 60kg/mm2 Quenched and Tempered High Strength Steel (60kg/mm2급 조질고장력강의 용접입열량에 따른 기계적 특성 변화)

  • Kim, O.S.;Park, K.C.;Chung, I.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.35-43
    • /
    • 1994
  • For the purpose of studying the change of mechanical properties of weld parts, shielded metal are welding, one-pole and two-pole submerged arc welding were accomplished weldability on $60kg/mm^2$ quenched and tempered high strength steel. Charpy impact values of the weld metal in welded parts by SMAW and SAW were lower than those of the heat affected zone and increased in order of bond, coarsened, refined and carbon spheroidized regions in the heat affected zone. Grain size of prior austenite or M-A constituent did not significantly affect toughness of welded parts, but precipitated carbide films which forms at the grain boundaries or within matrix and volume fraction of pearilte were most important factor for toughness.

  • PDF

The effect of tempering temperature on the mechanical properties and fatigue crack propagation in STS 420 stainless steel (STS 420 스테인레스 강의 기계적 성질 및 피로균열전파에 미치는 템퍼링 온도의 영향)

  • 박용식;임병수
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.97-103
    • /
    • 1992
  • An experimental investigation has been carried out to determine the effect of tempering temperature on the fatigue crack propagation behavior and mechanical properties using the quenched and tempered STS420 martensitic stainless steel. Heat treatments of tempering for two hours at the five different temperatures of 150.deg.C, 300.deg.C, 450.deg.C, 600.deg.C and 700.deg.C have been performed on the martensite obtained by air cooling the specimens austenitized for one hour at 1010.deg.C. Tensile strength, yield strength, hardness, .DELTA.K$_{th}$, C and m values of differently tempered specimens have been investigated by tensile, hardness and fatigue tests.s.

  • PDF