• Title/Summary/Keyword: Tempered steel

Search Result 153, Processing Time 0.02 seconds

Heat input effects on microstructure quenched and tempered steel ASTM A517 to stainless steel AISI 316L

  • Pezeshkian, Rouhollah Mohsen;Shafaiepour, Saiedeh
    • Journal of Welding and Joining
    • /
    • v.33 no.1
    • /
    • pp.41-48
    • /
    • 2015
  • In this study, the effect of heat input on weld metal microstructure and the effects of dissimilar weld heat affected zone in quenched and tempered ASTM A517 on the stainless steel AISI 316L is investigated through the optimization of welding parameters. For this purpose, two welding techniques are used, tungsten-conventional gas and pulsed gas with weld wire ER 309MoL with Diameter 2.4 mm. Research showed that the grain size of the heat affected zone in pulsed welding is less compared with conventional welding; weld metal structure is fully austenitic, it has a finer structure in the pulsed method. Additionally, the growth of weld metal adjacent steel A517 is different from steel 316L. Further, investigation showed that the rate of dilution is less in the pulsed method and the impact energy is increased in each three regions of the weld metal and heat affected zones in the pulsed method; the fracture in the weld metal and heat affected zone of steel 316L is quite soft and it is semi-crispy in the heat affected zone of steel A517.

Effect of chemical composition on the weldability of quenched and tempered high strength steels (주질고장력강의 용접성에 미치는 화학조성의 영향)

  • 장웅성;김숙환;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.6 no.3
    • /
    • pp.27-36
    • /
    • 1988
  • In fabrication of various welded structures made of high strength steels, the occurence of hydrogen assisted cracking and embrittlement in HAZ is prime importance. The present work was carried out to clarify the effect of chemical compositions, especially B and/or Ti addition on the cold cracking susceptibility and HAZ embrittlement in low crabon equivalent steel. Tests results showed that the addtio of optimum boron content in steel with low Pem value i.e., below 0.20 % was the best way to improve the weldability as well as the mechanicla properties of $60kg/mm^2$ grade quenched and tempered high strength steels.

  • PDF

Weldability of boron containing low carbon quenched and tempered 60kg/mm$^{2}$ steel with low cold cracking susceptibility (저탄소 B 첨가 60kg/mm$^{2}$급 저균열감수성 조질고강력강의 용접성)

  • 장웅성;김태웅;장래웅;엄기원
    • Journal of Welding and Joining
    • /
    • v.7 no.1
    • /
    • pp.59-66
    • /
    • 1989
  • The weldability and joint performance were evaluated for newly developed 60kg/mm$\^$2/ steel which had low cold cracking susceptibility. The main results obtained were as follows; In case of quenched and tempered 60kg/mm$\^$2/ steels, it was very effective to improve weldability and joint performance by lowering carbon and Pcm level. Very small addition of about 0.001 to 0.002wt% boron exhibited an appreciable compensation effect on strength which was decreased by lowering carbon and Pcm level. As a result, the newly developed steel was able to be welded without preheating and exhibited superior joint performance to conventional steels.

  • PDF

Microstructure and Tensile Properties of 700 MPa-Grade High-Strength and Seismic Resistant Reinforced Steel Bars (700 MPa급 고강도 및 내진 철근의 미세조직과 인장 특성)

  • Hong, Tae-Woon;Lee, Sang-In;Hwang, Byoungchul
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.391-397
    • /
    • 2018
  • This study deals with the microstructure and tensile properties of 700 MPa-grade high-strength and seismic reinforced steel bars. The high-strength reinforced steel bars (600 D13, 600 D16 and 700 D13 specimens) are fabricated by a TempCore process, while the seismic reinforced steel bar (600S D16 specimen) is fabricated by air cooling after hot rolling. For specimens fabricated by the TempCore process, the 600 D13 and 600 D16 specimens have a microstructure of tempered martensite in the surface region and ferrite-pearlite in the center region, while the 700 D13 specimen has a microstructure of tempered martensite in the surface region and bainite in the center region. Therefore, their hardness is the highest in the surface region and shows a tendency to decrease from the surface region to the center region because tempered martensite has a higher hardness than ferrite-pearlite or bainite. However, the hardness of the 600S D16 specimen, which is composed of fully ferrite-pearlite, increases from the surface region to the center region because the pearlite volume fraction increases from the surface region to the center region. On the other hand, the tensile test results indicate that only the 700 D13 specimen with a higher carbon content exhibits continuous yielding behavior due to the formation of bainite in the center region. The 600S D16 specimen has the highest tensile-to-yield ratio because the presence of ferrite-pearlite and precipitates caused by vanadium addition largely enhances work hardening.

The Effects of the Structural Changes and Mechanical Properties of the Austenitized and Tempered Martensitic STS 410 Stainless Steel on Its Temper Embrittlement (STS 410 마르텐사이트계 Stainless 강의 템퍼취성과 조직 및 기계적 성질에 관한 연구)

  • S.H., Lee;T.H., Go;W.S., Lee;S.D., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.303-313
    • /
    • 2022
  • The purpose of this study was to test and analyze the effects of the mechanical properties and structural changes of the austenitized and tempered martensite STS 410 stainless steel containing 11.5~13%Cr and 0.10%C on its temper embrittlement. The STS 410 stainless steel test pieces for each 3 hours at 960℃, 1000℃ and then, tempered them for 2 hours at 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃ and 700℃ known as the intervals vulnerable to temper embrittlement to observe the changes of their structures and mechanical properties. In case autenitizing was insufficient due to lower temperature of thermal treatment for solution, unsolved carbides and ferrites remained in the structure after quenching, which meant that the parts could wear out and corrode to embrittle at the room temperature. Elongation and impact energy changes with Tempering conditions showed minimum results in range of 400~500℃. The decrease in elongation and impact energy at 400~500℃ was the hardening effect of the subgrain due to the precipitation of many M3C or M7C3, M23C6. And STS 410 stainless steel corrosion tested in 10% NaCl solution at 30℃ after tempering treatment. The degree of corrosion sensitization showed increasing tendency with increase of tempering temperature and Cr carbide precipitation were observed in grain boundary.

Influence of Steel-making Process and Heat-treatment Temperature on the Fatigue and Fracture Properties of Pressure Vessel Steels (제강 및 열처리 조건이 압력용기강의 피로 및 파괴특성에 미치는 영향)

  • Koh, S.K.;Na, E.G.;Baek, T.H.;Park, S.J.;Won, S.Y.;Lee, S.W.
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.87-92
    • /
    • 2001
  • In this paper, high strength pressure vessel steels having the same chemical compositions were manufactured by the two different steel-making processes, such as vacuum degassing(VD) and electro-slag remelting(ESR) methods. After the steel-making process, they were normalized at $955^{\circ}C$, quenched at $843^{\circ}C$, and finally tempered at $550^{\circ}C$ or $450^{\circ}C$, resulting in tempered martensitic microstructures with different yielding strengths depending on the tempering conditions. Low-cycle fatigue(LCF) tests, fatigue crack growth rate(FCGR) tests, and fracture toughness tests were performed to investigate the fatigue and fracture behaviors of the pressure vessel steels. In contrast to very similar monotonic, LCF, and FCGR behaviors between VD and ESR steels, a quite difference was noticed in the fracture toughness. Fracture toughness of ESR steel was higher than that of VD steel, being attributed to the removal of impurities in steel-making process.

  • PDF

Heat treatment effect on Mechanical property in SM45C (AISI1045) steel (구조용 중탄소강 SM45C의 열처리에 따른 기계적 성질변화)

  • Jun, Sang-Jo;Lee, Im-Kyun;Kim, Song-Hee
    • Journal of Industrial Technology
    • /
    • v.6
    • /
    • pp.33-38
    • /
    • 1986
  • The aim of this study is to find out the relationships between the microstructures of SM45C(AISI1045) steel and fatigue crack propagation behaviour. Three microstructures such as (i) as received (fully annealed). (ii) water quenched and tempered, and (iii) oil quenched and tempered were used for fundamental mechanical testing and fatigue crack proagation test. The microstructures of (ii) and (iii) showed superior in tensile strength to (i). Resistance against fatigue crack propagation was higher in structure (i), while tensile properties were better in structures (ii) and (iii). It is believed due to that the enhancement of roughness of fracture surface obsered in structure (i) increases ${\Delta}Kth$ and lowers fatigue crack growth rate. However it does not necessarily mean the quenched and tempered structures (ii) and (iii) are undesirable for the engineering component because fatigue limit in low cycle test appears usually higher in the microstructures of higher strength.

  • PDF

Effect of Cooling Velocity on the Microstructures and Mechanical Properties of Si, Mn, V added HSLA Steels (Si, Mn, V이 첨가된 비조질강의 미세조직 및 기계적 성질에 미치는 냉각속도의 영향)

  • Park, Yon-Seo;Choi, Chang-Soo;Chung, In-Sang
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.14 no.5
    • /
    • pp.267-274
    • /
    • 2001
  • Microalloyed steels, which substituted by conventional quenched and tempered steels, have been used in a wide variety of structural and engineering application. The main driving force for preference of MA steels is a cost reduction which can be achieved by an omission of heat treatment. In this study, low carbon martensitic MA steels in 0.18C-0.30(0.60)Si-2.00(1.80)Mn-0.05S-1.5Cr-0.05(0.10)V-0.015Ti(wt%) were investigated to know the effects of cooling method on the mechanical properties and microstructures of Si, Mn, V added microalloyed steel at different reheating temperature. Microstructure of oil quenched steels which were comprised lath martensite, auto-tempered martensite and retained austenite, had more various structure than that of air cooled steel made of mainly bainite. Therefore, oil quenched steels, which had more various microstructure, had better strength-toughness balance compare to air cooled steels. In the impact test, fracture mode of oil quenched steels, which showed good mechanical properties, were dimple, but that of air cooled steels were cleavage.

  • PDF

The Estimation of Mechanical Properties of the High Frequency Induction Hardening SM45C Steel by Acoustic Emission (음향방출법에 의한 SM45C 고주파 열처리 강의 기계적 특성 평가)

  • Rhee, Zhang-Kyu;Kim, Bong-Gag
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2009.11a
    • /
    • pp.471-481
    • /
    • 2009
  • This study is deal with the high frequency induction hardening (HF at $850^{\circ}C$, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen which was tempered at $150^{\circ}C$, did not appear any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE amplitude distribution showed between 45~60dB. (2) The HF specimen which was tempered at $300^{\circ}C$, slip and fracture occurred at the hole area of the tensile specimen. As it passes the yield point, the AE energy increased intermittently and AE amplitude distribution showed between 70~85dB. In addition, after the maximum tensile load, it showed high amplitude and energy distribution. The AE amplitude showed between 45~70dB. (3) The HF specimen which was tempered at $450^{\circ}C$, a brittle fracture occurred as if it is torn in the direction of $45^{\circ}$ on parallel area over the both sides of the tensile specimen, which led to several peak to be appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.

  • PDF

The Analysis of Mechanical Properties of the High Frequency Induction Hardening SM45C Steel by Acoustic Emission (음향방출법에 의한 SM45C 고주파 열처리 강의 기계적 특성 평가)

  • Rhee, Zhang-Kyu
    • Journal of the Korean Society of Mechanical Technology
    • /
    • v.13 no.2
    • /
    • pp.93-100
    • /
    • 2011
  • This study deals with the high frequency induction hardening (HF at $850^{\circ}C$, 120kHz & 50kW condition) SM45C steel. (1) The HF specimen, which was tempered at $150^{\circ}C$, did not show any tempering effect. A brittle fracture occurred at rounded area of the tensile specimen. AE (acoustic emission) amplitude distribution showed between 45dB and 60dB. (2) A slip and fracture occurred at the hole area of the HF specimen which was tempered at $300^{\circ}C$. As they pass the yield point, the AE energy is increased intermittently and AE amplitude distribution exists between 70dB and 85dB. In addition, after imposing the maximum tensile load, AE signals showed high amplitude and energy distribution. The AE amplitude showed between 45dB and 70dB. (3) A brittle fracture occurred at HF specimen which was tempered at $450^{\circ}C$ as if it is torn in the direction of $45^{\circ}$ on parallel area over the both sides of the tensile specimen, which lead to several peak appeared in AE energy. It was found that the AE amplitude was relatively low and the AE energy was high.