• Title/Summary/Keyword: Tempered steel

Search Result 153, Processing Time 0.02 seconds

Resistance to Hydrogen Embrittlement of Ultra-high Strength Pearlitic Bolt (펄라이트 조직을 갖는 초고강도 볼트의 수소취성 저항성)

  • Ahjeong Lyu;Young-Kook Lee
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.15-21
    • /
    • 2023
  • Recently, ultra-high strength bolts have been developed for weight lightening of a vehicle and fuel efficiency. However, some amount of diffusible H is absorbed into the bolt during its manufacturing process so that H embrittlement (HE) often occurs particularly in high strength bolts with a tempered martensitic microstructure. This brings attention to ultra-high strength pearlitic bolts with a high resistance to HE. Therefore, in this study the HE resistance of the 1.6 GPa grade pearlitic bolt was evaluated through tightening tests and slow strain rate tests (SSRTs), and fracture surfaces of failed bolts were comparatively observed. A critical H content for the tightening test turned out to be ~0.23-0.35 mass ppm. The bolt with a diffusible H content of ~0.35 mass ppm was fractured during the tightening test, showing a quasi-cleavage fracture surface, indicating the occurrence of HE. In addition, the bolt underwent premature elastic failure during the SSRT. This implies that the HE resistance of high strength bolts can be evaluated by both tightening test and SSRT.

Effect of Tempering Temperature on Hydrogen Embrittlement of Cr-Mo Low Alloy Steels for High-pressure Gaseous Hydrogen Storage (고압수소 저장용 Cr-Mo계 저합금강의 수소취성에 미치는 템퍼링 온도의 영향)

  • M. S. Jeong;H. C. Shin;S. G. Kim;B. Hwang
    • Transactions of Materials Processing
    • /
    • v.33 no.3
    • /
    • pp.185-192
    • /
    • 2024
  • This study examined how varying tempering temperatures affect the susceptibility of Cr-Mo low alloy steels to hydrogen embrittlement. A slow strain-rate test (SSRT) was carried out on the steels electrochemically pre-charged with hydrogen in order to examine the hydrogen embrittlement behavior. The results showed that the hydrogen embrittlement resistance of the Cr-Mo low alloy steels improved with increasing tempering temperature. Thermal desorption analysis (TDA) revealed that diffusible hydrogen content decreased with increasing tempering temperature, accompanied by a slight increase in the peak temperature. This decrease in hydrogen content was likely due to a reduction in dislocation density which served as reversible hydrogen trap sites. These findings underline the significant role of tempering temperature in enhancing the hydrogen embrittlement resistance of Cr-Mo low alloy steels.

The Development of Water-Soluble Black Coloring Agent and Its Application (수용성 흑색 착색제의 개발과 이의 응용)

  • Kim, M.G.;Jung, B.H.;Moon, M.J.;Kim, S.S.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.15 no.5
    • /
    • pp.213-218
    • /
    • 2002
  • In order to develop the economic and environmental water-soluble black coloring agent, some adequate chemical mixtures were mixed and this solution was applied to coat quenched and tempered 51B20 steel bolt. Some basic properties of the solution and characteristics of the coated film in addition to the corrosion resistance were investigated. The developed 100 kg of water-soluble black coloring agent solution was a chemical mixture consisted of 10 kg of aqueous coloring agent, 40 kg of surface active agent, 0.3 kg of anti-foam agent and $50{\ell}$ of water. The coated film of the bolt was composed of hard layer of about $2{\mu}m$ and the disbondable soft layer of about $4{\mu}m$ above the hard layer. Many surface active agents peaks and a few hydrophilic peaks were observed in the coated film. Surface roughness value of the coated bolt was lower than that of the non-coated bolt. Corrosion resistance of the coated bolt considerably improved and also relatively showed a good polarization resistance at test condition of $40^{\circ}C$ colorizing temperature and 5% the solution concentration in 3% NaCl anodic polarization test. Initial appearance time of the surface rust was greatly retarded owing to the coated film in salt spray test.

Nd-YAG LASER MICRO WELDING OF STAINLESS WIRE

  • Takatugu, Masaya;Seki, Masanori;Kunimas, Takeshi;Uenishi, Keisuke;Kobayashi, Kojiro F.;Ikeda, Takeshi;Tuboi, Akihiko
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.187-192
    • /
    • 2002
  • Applicability of laser micro welding process to the fabrication of medical devices was investigated. Austenitic stainless steel wire (SUS304) was spot melted and crosswise welded, which is one of the most possible welding process for the fabrication of medical devices, by using a Nd-YAG laser. Effects of welding parameters on the microstructure, tensile strength and corrosion resistance were discussed. In the spot melting, melted metal width decreased with decreasing the input energy and pulse duration. Controlling the laser wave to reduce laser noise which occurred in the early stage of laser irradiation made reasonable welding condition wider in the welding condition of small pulse duration such as 2ms. The microstructure of the melted metal was a cellular dendrite structure and the cell size of the weld metal was about 0.5~3.5 ${\mu}{\textrm}{m}$. Tensile strength increased with the decrease of the melted metal width and reached to a maximum about 660MPa, which is comparable with that for the tempered base metal. Even by immersion test at 318K for 3600ks in quasi biological environment (0.9% NaCl), microstructure of the melted metal and tensile strength hardly changed from those for as melted material. In the crosswise welding, joints morphologies were classified into 3 types by the melting state of lower wire. Fracture load increased with input energy and melted area of lower wire, and reached to a maximum about 80N. However, when input energy was further increased and lower wire was fully melted, fracture load decreased due to the burn out of weld metal.

  • PDF

The Effect of Heat-treatment on Brazing Characteristics of WC-9%Co/SUJ2 Steel (WC-9%Co와 SUJ2강의 접합특성에 미치는 열처리의 영향)

  • 정하윤;김종철;박경채
    • Journal of Welding and Joining
    • /
    • v.15 no.5
    • /
    • pp.56-63
    • /
    • 1997
  • In The study, the bonding of WC-9%Co to SUJ2 steel using Ag-Cu-Zn-Cd insert metal has performed to investigate the bonding properties by heat-treatment. Bonding was brazed for 5-30min at 95$0^{\circ}C$, performed solution treatment for 5 min at 85$0^{\circ}C$ and sustained subsequently oil quenching. To investigate the effect of heat-treatment, tempering was executed at $600^{\circ}C$ for 30 min after oil quenching. Mechnical properties and chemical compositions on the brazed bonding interface were investigated by means of microstructural observation, 4-point bending test and EDS and XRD measurements. The results obtained were as follows. 1) The bonding strength of WC-9%Co/SUJ2 joints by Ag-Cu-Zn-Cd insert metal obtained about 78, 117 and 72MPa after brazing for 5, 20 and 30 min at 95$0^{\circ}C$. And the highest bonding strength obtained about 131MPa after brazing for10 min at 95$0^{\circ}C$ 2) Higher bonding strength of 288MPa was obtained in the joint that brazed for 10 min at 95$0^{\circ}C$, and carried out tempering for 30 min at $600^{\circ}C$ subsequently. 3) Fracture of joint brazed by Ag-Cu-Zn-Cd insert metal for 5, 10, 20 and 30 min created WC-9%Co/SUJ2 interface. The joint that brazed for 10 min at 95$0^{\circ}C$ and then tempered for 30 min at $600^{\circ}C$ was fractured at the site of WC-9%Co.

  • PDF

Effect of Multiple Tempering on Microstructure and Mechanical Properties of AISI 4340 Steel (반복 템퍼링이 AISI 4340 강의 미세조직과 기계적 특성에 미치는 영향)

  • Jungbin Park;Junhyub Jeon;Juheon Lee;Seung Bae Son;Seok-Jae Lee;Jae-Gil Jung
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.36 no.1
    • /
    • pp.7-14
    • /
    • 2023
  • We investigated the effect of multiple tempering on the microstructure and mechanical properties of AISI 4340 steel. The austenitized and quenched AISI 4340 steels were tempered at 550, 600, and 650℃ for 1, 2, and 4 h by single-tempering (ST). The multiple tempering was conducted for 4 h by double-tempering (DT, 2 h + 2 h), and quadruple-tempering (QT, 1 h + 1 h + 1 h + 1 h). As tempering temperature increases, yield strength and ultimate tensile strength decrease and elongation increases due to recovery and recrystallization of martensite and coarsening of carbides. At 550℃, as the number of tempering cycles increases, the yield strength and tensile strength decrease at the expense of fracture elongation. At 600 and 650℃, the yield strength and tensile strength increase with increasing the number of tempering cycles while fracture elongation maintains similar values. The multiple tempering at the same tempering time of 4 h improves the modulus of toughness at all tempering temperatures, which is presumed to be due to the change in carbide precipitation behavior by multiple tempering.

Evaluation of Harmless Crack Size of SCM822H Steel by Double Shot Peening (이중 쇼트 피닝에 의한 SCM822H 강의 무해화 균열 크기 평가)

  • Jin-Woo Choi;Seo-Hyun Yun;Yung-Kug Kwon;Gum-Hwa Lee;Ki-Woo, Nam
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.26 no.6_2
    • /
    • pp.1011-1017
    • /
    • 2023
  • In this study, the harmless crack size (ahml) by double shot peening (DSP) using shot balls with different diameters was evaluated on carburized, quenched-tempered SCM822H steel. The minimum crack size (aNDI) detectable by non-destructive inspection was also evaluated. The relationship between the crack size (a25,50) that reduces the fatigue limit by 25% and 50% and ahml was evaluated. The residual stress of DSP was greater in SP(0.6+0.08) than SP(0.8+0.08) and appeared deeper in the depth direction. In addition, the hardness below the surface appeared larger. The fatigue limit of DSP increased 2.07 times and 1.95 times compared to non-SP. All ahml of the DSP specimen was determined at the depth (a). The compressive residual stress distribution affects ahml, and the ahml of SP(0.6+0.08), which has a large compressive residual stress and a high fatigue limit, appeared large. ahml of SP(0.6+0.08) introduced deeper than the residual stress of SP(0.8+0.08) is larger in the range of As=1.0-0.3. Since the residual stress in the thickness direction has a greater effect on ahml than the residual stress at the surface, it is necessary to introduce it more deeply. The relation of ahml, a25,50, and aNDI were evaluated in the point for safety and reliability.

An Evaluation of Skiving Cutting Characteristics of TiCN PACVD Coating Caribide Hob (TiCN PACVD코팅 초경호브의 Skiving절삭특성 평가)

  • Cheon, Jong-Pil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.2
    • /
    • pp.471-477
    • /
    • 2012
  • SCM420 steel tempered after performing gear hove PACVD carbide coating on the surface after the cutting surface hardness was high. Difficult-to-cut, without coating is classified as mild as large, including materials like mild, high strength that improves tool life and productivity have limited availability. Drive to improve it in the TiCN-coated carbide call for war to the finish coating on cutting a hob skiving good workability, tool wear less, 2.5-fold increase in tool life results were obtained. Experiments using CNC Skiving hobbing machine with wet cutting conditions, cutting speed and feed rate to apply a variety of the tool wear and surface roughness data were obtained. Results from condition 2 (V = 200m/min F = 0.7mm/rev) cutting speed feed mark the cutting surface microstructure and surface roughness Rmax $4.7{\mu}m$(Ra $1.19{\mu}m$) of the data was obtained.

Study as to Formative Characteristics of High Tech Furniture Design -Laying Stress on Correlation between Technology Art and Furniture Design-

  • Kim, Kyoung-Soo
    • Journal of the Korea Furniture Society
    • /
    • v.19 no.6
    • /
    • pp.439-446
    • /
    • 2008
  • High Tech Design manner is a design concept that had been constantly discussed in constitution process of the West art history and modem ideology and had been experimented in industry, having started from futurism and structuralism in the early 20th century through Kinetic Art & Technology Art and up to now. High Tech Design had a great influence also on Post Modernism and more important is that this manner of design will be existing continually in the future too. From the modem times when machine civilization started, the artist and designers expressed a utopia will showing the future world with help of High Tech Design and modem people are realizing technology images as a utopia, in the space and material presented by this high tech design. And this utopia imply the images of dynamic power, speed making a voyage in universe, dream of future, hope, mass production, earth's environment, wealth etc. High Tech furniture was lightly designed by using thin steel wire, structure stressing the metallic characteristic and tempered glass, and it was used for presenting a convenient interior space visually, and with that it can make a unified sense in High Tech interior space, and a contrary effect compared with minimal space. High Tech Design equipped with glass and metal materials looking inappropriate for our interior space due to their sharp and cold image has been regularly used as living furniture, not only decoration function, and then there must be reasons for that. This study intends to research how High Tech Design has been changed and developed in the design history & West art history from the early 20th century, and to present it's value of development as data orienting, namely a direction for the industry of the next-generation and furniture design.

  • PDF

Metallurgical Analysis of Iron Artifacts Excavated from the Yeongsan River Basin (영산강유역 출토 철기유물의 미세조직 분석)

  • Lee, Jae-Sung;Kim, Soo-Ki
    • Journal of Conservation Science
    • /
    • v.18 s.18
    • /
    • pp.33-50
    • /
    • 2006
  • Around Yeongsan river basin, there are Yeongkwang Gundong, Muan Inpyeong Tombs, Muu Gusan-ri Tombs and Hampyeong Guksan remain from which a lot of iron artifacts were excavated. Among them, 6 iron artifacts were chosen, and their microstructures were analyzed. As a result, Iron artifacts were produced sponge iron by the low temperature reduction process and a part of microstructure have the possibility that steel made by decarburizing. And also, by tempering the parts which need high strength, the iron artifacts had high strength and by distributing the weakness of the tempered structure to the nearby untempered parts, their breaking was prevented and they had the durability. These skills were used then. Especially these skills were found to be used in the 2nd century by high skilled people because an iron axe excavated at Yeongkwang Gundong of 2nd century by the historical record showed that the skill was used. Also microstructures were found to show the possibility that the iron technology was inherited to the late 5th century. When producing iron artifacts made of sponge iron containing small amount of carbon, that was made by the production process repeating molding, carburizing, heat treatment and hammering.

  • PDF