• Title/Summary/Keyword: Temperature-electric power demand sensitivity

Search Result 2, Processing Time 0.016 seconds

Development of Short-Term Load Forecasting Algorithm Using Hourly Temperature (시간대별 기온을 이용한 전력수요예측 알고리즘 개발)

  • Song, Kyung-Bin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.4
    • /
    • pp.451-454
    • /
    • 2014
  • Short-term load forecasting(STLF) for electric power demand is essential for stable power system operation and efficient power market operation. We improved STLF method by using hourly temperature as an input data. In order to using hourly temperature to STLF algorithm, we calculated temperature-electric power demand sensitivity through past actual data and combined this sensitivity to exponential smoothing method which is one of the STLF method. The proposed method is verified by case study for a week. The result of case study shows that the average percentage errors of the proposed load forecasting method are improved comparing with errors of the previous methods.

The Forecasting Power Energy Demand by Applying Time Dependent Sensitivity between Temperature and Power Consumption (시간대별 기온과 전력 사용량의 민감도를 적용한 전력 에너지 수요 예측)

  • Kim, Jinho;Lee, Chang-Yong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.42 no.1
    • /
    • pp.129-136
    • /
    • 2019
  • In this study, we proposed a model for forecasting power energy demand by investigating how outside temperature at a given time affected power consumption and. To this end, we analyzed the time series of power consumption in terms of the power spectrum and found the periodicities of one day and one week. With these periodicities, we investigated two time series of temperature and power consumption, and found, for a given hour, an approximate linear relation between temperature and power consumption. We adopted an exponential smoothing model to examine the effect of the linearity in forecasting the power demand. In particular, we adjusted the exponential smoothing model by using the variation of power consumption due to temperature change. In this way, the proposed model became a mixture of a time series model and a regression model. We demonstrated that the adjusted model outperformed the exponential smoothing model alone in terms of the mean relative percentage error and the root mean square error in the range of 3%~8% and 4kWh~27kWh, respectively. The results of this study can be used to the energy management system in terms of the effective control of the cross usage of the electric energy together with the outside temperature.