• Title/Summary/Keyword: Temperature variation

Search Result 5,661, Processing Time 0.037 seconds

A Study on Ultrasonic Technique for Measuring Gas Temperature (기체온도 측정을 위한 초음파 계측에 관한 연구)

  • Yoon, Cheon Han;Choi, Young;Jeon, Heung Shin
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.7
    • /
    • pp.893-900
    • /
    • 1999
  • Measuring temperature with ultrasonic wave apparatus is desirable in the cue of gas below $300^{\circ}$ because of the fact that the temperature of gas is the function of only sound velocity. In this study, being used a heatable wind channel and a blower. the variation of temperature is observed in accordance with flow rate(air velocity). The frequency modulation method is used to measure the temperature which is varying in hot air flow up to $100^{\circ}$. The length changed in the position of ultrasonic sensors is considered. Also. the effects of air velocity at the same temperature and various facing angles of ultrasonic sensors are considered. As a result of this study. it has been found that the temperature in gas flow is correctly measured regardless of both the distance of ultrasonic sensors and the variation of air velocity. and that there is just a little influence of facing angles.

Method of Setting Nozzle Intervals at the Finishing Scale Breaker

  • Park, Jong-Wook;Kim, Sung-Cho;Park, Jin-Won
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.870-878
    • /
    • 2003
  • The scale is removed from the strip by high pressure hydraulic descaling at the FSB (Finishing Scale Breaker). Recently, the spray height of nozzle has a trend to be shorter for the purpose of increasing the impact pressure by the high pressure water jet. Here, the nozzle intervals should be decided after considering the impact pressure and the temperature distribution on the strip. In other words, the minimum of impact pressure at the overlap of spray influences the surface grade of the strip due to scale and the overlap distance of the spray affects the temperature variation in the direction of the width of strip. In the present study, the impact pressure of the high pressure water jet is measured by the hydraulic descaling system and calculated with regard to the lead angle of 15$^{\circ}$ and the offset angle of 15$^{\circ}$, and then the temperature distribution and the temperature variation are calculated at the overlap distances of 0 mm, 10 mm, 20 mm, and 30 mm, respectively. The method of setting nozzle intervals is shown by utilizing these results.

A Numerical Simulation of the Interannual and Decadal Variations of the Northern Lower Stratospheric Polar Temperature (북반구 하부성층권 극기온의 경년변화와 수십년주기변화의 수치모의)

  • Choi, Wookap;Kim, Yujin;Kim, Dongjoon
    • Atmosphere
    • /
    • v.19 no.1
    • /
    • pp.79-91
    • /
    • 2009
  • Seoul National University General Circulation Model (SNUGCM) has been run for 100 years to obtain daily temperature and meridional velocity at the Northern lower stratosphere. The model results are compared with the NCEP/NCAR reanalysis data. The polar temperature and the eddy heat flux from the model show that the model-produced climatology has well-known cold bias and weaker planetary wave activities. The model climatology also has a lag in the seasonal evolution. The relationship between the model-produced polar temperature and the eddy heat flux is investigated with respect to the interannual and decadal time scales. The interannual variation of the polar temperature is related with both total and stationary eddy heat flux in January and March, which is in agreement with observation. The model, however, does not reproduce the relationship between the decadal variation of the polar temperature and transient eddy heat flux, which is revealed in the observed data.

Silver nanowire-containing wearable thermogenic smart textiles with washing stability

  • Dhanawansha, Kosala B.;Senadeera, Rohan;Gunathilake, Samodha S.;Dassanayake, Buddhika S.
    • Advances in nano research
    • /
    • v.9 no.2
    • /
    • pp.123-131
    • /
    • 2020
  • Conventional fabrics that have modified in to conductive fabrics using conductive nanomaterials have novel applications in different fields. These of fabrics can be used as heat generators with the help of the Joule heating mechanism, which is applicable in thermal therapy and to maintain the warmth in cold weather conditions in a wearable manner. A modified fabric can also be used as a sensor for body temperature measurements using the variation of resistance with respect to the body temperature deviations. In this study, polyol synthesized silver nanowires (Ag NWs) are incorporated to commercially available cotton fabrics by using drop casting method to modify the fabric as a thermogenic temperature sensor. The variation of sheet resistance of the fabrics with respect to the incorporated mass of Ag NWs was measured by four probe technique while the bulk resistance variation with respect to the temperature was measured using a standard ohm meter. Heat generation profiles of the fabrics were investigated using thermo graphic camera. Electrically conductive fabrics, fabricated by incorporating 30 mg of Ag NWs in 25 ㎠ area of cotton fabric can be heated up to a maximum steady state temperature of 45℃, using a commercially available 9 V battery.

Compensation of temperature characteristics by frequency control of an electronic ballastfor a compact fluorescent lamp (콤팩트 형광램프용 전자식 안정기의 주파수 제어에 의한 온도보상)

  • Song, Sang-Bin;Gwark, Jae-Young;Yeo, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.48 no.1
    • /
    • pp.27-33
    • /
    • 1999
  • Compact fluorescent lamps are very sensitive to the variation of ambient temperature. This paper investigates the temperature characteristics of a 15[W] compact fluorescent lamp, and compensates the variation of light output by frequency control of its electronic ballast. Circuit parameters for the inverter of the electronic ballast are obtained by analyzing the R-L-C equivalent circuit for the inverter and the lamp. The optimum ratio of the two capacitance($C_1$/$C_2$), which are connected with the lamp in series and in parallel, respectively, is determined which consideration of the temperature variation within a range of 10~35[$^{\circ}C$]. As a result a value of 10 for the ratio is obtained at an operating frequency of 57[kHz], and with this value the frequency control works well for temperature compensation. Its validity is verified by investigating light output stabilization characteristics resulting from frequency control of the lamp at various temperatures.

  • PDF

Environmental Change Uncovers Differences in Polygenic Effect of Chromosomes from a Natural Population of Drosophila melanogaster

  • Jeung, Min-Gull;Thompson, James-N.Jr;Lee, Chung-Choo
    • Animal cells and systems
    • /
    • v.1 no.4
    • /
    • pp.609-617
    • /
    • 1997
  • Polygenic variation of sternopleural bristle number was investigated at the whole chromosome level in a natural population of Drosophila melanogasfer. Fifty pairs of second and third chromosomes were analyzed at $25^\circ{C}$. Since environmental factors such as temperature influence polygenic expression of quantitative traits, whole chromosomal effects of 28 pairs from the larger original sample were measured under cycling temperature, a $10-30\circ{C}$ cycle in 24 hours, to reveal any polygenic alleles whose effects might be masked under the constant temperature. While third chromosomes typically showed a larger contribution to polygenic variation in both environments, second chromosomes showed greater sensitivity to environmental changes. Cluster analyses of second and third chromosomes produced a limited number of clusters. Such a small number of cluster's implies that there may be a small number of genes, or quantitative trait loci (QTLs), having large effects on phenotypic variation. The genetic structure assessed under constant temperature, however, did not show any correlation with the structure under cycling temperature. The discrepancy could be caused by independent response of each polygenic allele to temperature changes. Thus, polygenic structure in natural populations should be thought of as a temporally changing profile of interactions between gene and ever-changing environment.

  • PDF

Electron-excitation Temperature with the Relative Optical-spectrumIntensity in an Atmospheric-pressure Ar-plasma Jet

  • Han, Gookhee;Cho, Guangsup
    • Applied Science and Convergence Technology
    • /
    • v.26 no.6
    • /
    • pp.201-207
    • /
    • 2017
  • An electron-excited temperature ($T_{ex}$) is not determined by the Boltzmann plots only with the spectral data of $4p{\rightarrow}4s$ in an Ar-plasma jet operated with a low frequency of several tens of kHz and the low voltage of a few kV, while $T_{ex}$ can be obtained at least with the presence of a high energy-level transition ($5p{\rightarrow}4s$) in the high-voltage operation of 8 kV. The optical intensities of most spectra that are measured according to the voltage and the measuring position of the plasma column increase or decay exponentially at the same rate as that of the intensity variation; therefore, the excitation temperature is estimated by comparing the relative optical-intensity to that of a high voltage. In the low-voltage range of an Ar-jet operation, the electron-excitation temperature is estimated as being from 0.61 eV to 0.67 eV, and the corresponding radical density of the Ar-4p state is in the order of $10^{10}{\sim}10^{11}cm^{-3}$. The variation of the excitation temperature is almost linear in relation to the operation voltage and the position of the plasma plume, meaning that the variation rates of the electron-excitation temperature are 0.03 eV/kV for the voltage and 0.075 eV/cm along the plasma plume.

Effect of Thermal Properties of Bentonite Buffer on Temperature Variation (벤토나이트 완충재의 열물성이 온도 변화에 미치는 영향)

  • Kim, Min-Jun;Lee, Seung-Rae;Yoon, Seok;Jeon, Jun-Seo;Kim, Min-Seop
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • A buffer in a geological disposal system minimizes groundwater inflow from the surrounding rock and protects the disposed high-level waste (HLW) against any mechanical impact. As decay heat of a spent fuel causes temperature variation in the buffer that affects the mechanical performance of the system, an accurate estimation of the temperature variation is substantial. The temperature variation is affected by thermal and material properties of the system such as thermal conductivity, density and specific heat capacity of the buffer, and thus these factors should be properly included in the design of the system. In particular, as the thermal properties are variable depending on the density and water content of the buffer, consideration of the effects should be included in the analysis. Hence, in this study, a numerical model based on finite element method (FEM) which is able to consider the change of density and water content of the buffer was established. In addition, using the numerical model, a parametric study was conducted to investigate the effect of each thermal property on the temperature variation of the buffer.

A Study on Applicability of Turbulence Models for Unsteady Turbulent Flow with Temperature Variation (온도변화를 수반한 비정상 난류유동장에 대한 난류모델의 적용성에 관한 연구)

  • 유근종;전원대
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • The suitable turbulence model is found to be required in the course of establishing a proper analysis methodology for thermal stripping phenomena which are shown in strong temperature variation area such as reactors and propulsion devices. Three different turbulence models of $\kappa$-$\varepsilon$ model, modified $\kappa$-$\varepsilon$ model, and full Reynolds stress(FRS) model, are applied to analyze unsteady turbulent flows with temperature variation. Three test cases are selected for verification. These are vertical jet flows with water and sodium, and parallel jet flow with sodium. Analysis yields the conclusion that 3-D computation with FRS betters others. However, modified modeling is required to improve its heat transfer characteristic analysis. Further analysis is performed to find momentum variation effects on temperature distribution. It is found that the momentum increase results increase of fluid mixing and magnitude of temperature variation.

Relationship between Phenological Stages and Cumulative Air Temperature in Spring Time at Namsan

  • Min, Byeong-Mee;Yi, Dong-Hoon;Jeong, Sang-Jin
    • Journal of Ecology and Environment
    • /
    • v.30 no.2
    • /
    • pp.143-149
    • /
    • 2007
  • To certify predictability for the times of phenological stages from cumulative air temperature in springtime, the first times of budding, leafing, flower budding, flowering and deflowering for 14 woody plants were monitored and air temperature was measured from 2005 to 2006 at Namsan. Year day index (YDI) and Nuttonson's Index (Tn) were calculated from daily mean air temperature. Of the 14 woody species, mean coefficient of variation was 0.04 in Robinia pseudo-acacia and 0.09 in Alnus hirsuta. However, mean coefficient of variation was 0.30 in Forsythia koreana and Stephanandra incisa and 0.32 in Zanthoxylum schinifolium. Therefore, the times of each phenological stage could be predicted in the former two species but not in latter three species by two indices. Of the five phenological stages, mean coefficient of variation was the smallest at deflowering time and the largest at budding time. In five phenological stages, mean coefficient of variation of YDI was in the range of $0.11{\sim}0.21$ but that of Tn was in the range of $0.15{\sim}0.26$. Therefore, the former was a better index than the latter. Of the species-phenological stage pair, coefficient of variation of YDI was 0.01 in Acer pseudo-sieboldianum - flower budding and below 0.05 in 11 pairs, whereas the YDIs over 0.40 were 4 pairs comprising of Prunus leveilleana - budding (0.51). Coefficient of variation of Tn was 0.01 in A. hirsuta - budding and below 0.05 in 8 pairs. The Tns over 0.40 were 5 pairs comprising of F. koreana - flower budding (0.66).