• Title/Summary/Keyword: Temperature reduction

Search Result 4,561, Processing Time 0.048 seconds

An Approach of Dimension Reduction in k-Nearest Neighbor Based Short-term Load Forecasting

  • Chu, FaZheng;Jung, Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.9
    • /
    • pp.1567-1573
    • /
    • 2017
  • The k-nearest neighbor (k-NN) algorithm is one of the most widely used benchmark algorithm in classification. Nowadays it has been further applied to predict time series. However, one of the main concerns of the algorithm applied on short-term electricity load forecasting is high computational burden. In the paper, we propose an approach of dimension reduction that follows the principles of highlighting the temperature effect on electricity load data series. The results show the proposed approach is able to reduce the dimension of the data around 30%. Moreover, with temperature effect highlighting, the approach will contribute to finding similar days accurately, and then raise forecasting accuracy slightly.

Synthesis of Aluminum Nitride Nanopowders by Carbothermal Reduction of Aluminum Oxide and Subsequent In-situ Nitridization (산화알루미늄 분말의 탄소열환원 및 직접 질화반응을 통한 질화알루미늄 나노분말의 합성)

  • Seo, Kyung-Won;Lee, Seong-Yong;Park, Jong-Ku;Kim, Sung-Hyun
    • Journal of Powder Materials
    • /
    • v.13 no.6 s.59
    • /
    • pp.432-438
    • /
    • 2006
  • Aluminum nitride (AlN) nanopowders with low degree of agglomeration and uniform particle size were synthesized by carbothermal reduction of alumina and subsequent direct nitridization. Boehmite powder was homogeneously admixed with carbon black nanopowders by ball milling. The powder mixture was treated under ammonia atmosphere to synthesize AlN powder at lour temperature. The effect of process variables such as boehmite/carbon black powder ratio, reaction temperature and reaction time on the synthesis of AlN nanopowder was investigated.

Microstructure and Mechanical Property of Aluminum Powder Compact by Powder-in Sheath Rolling Method (분말시스압연법에 의해 제조된 알루미늄 분말성형체의 조직 및 기계적 성질)

  • 이성희
    • Journal of Powder Materials
    • /
    • v.9 no.3
    • /
    • pp.153-160
    • /
    • 2002
  • A nitrogen gas atomized aluminum powder was consolidated by powder-in sheath rolling method. A pure aluminum tube with outer diameter of 12 mm and wall thickness of 1mm was used as a sheath. The aluminum tube filled with the aluminum powder, first, was cold-rolled to the thickness of 6mm for performing, and then consolidated by the cold rolling and/or subsequent hot rolling at 360, 460 and $560^{\circ}C$. The aluminum powder compact fabricated by the sheath rolling showed high relative density more than 0.96 at any rolling conditions. The 0.2% proof stress increased with increasing hot rolling reduction and hot rolling temperature. Tensile strength was hardly affected by change in the hot rolling reduction, whereas it decreased with increasing hot rolling temperature. The powder compact showed the large elongation when cold rolling or hot rolling reduction was large. It was found that the sheath rolling was an effective method for consolidation of aluminum powder.

Experimental Study on Flame Stabilization and $NO_{x}$ Reduction in a Non-Premixed Burner with Sawtooth Mixer

  • Fujimoto, Yohei;lnokuchi, Yuzo;Orino, Minoru;Yamasaki, Nobuhiko
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.485-490
    • /
    • 2004
  • Sawtooth mixing device used in a non-premixed burner is evaluated for flame stabilization and NO$_{x}$ reduction. Three mixers with different blade angles are tested. Methane is delivered through the fuel jet and air passes through the co-flow annulus. The flame mode changes (attached flame, lifted flame and extinction) against the fuel flow speed are measured, and the stability diagram is drawn. Moreover, by traversing thermocouple and sampling probe in the flame, the distribution of temperature and NO$_{x}$ mole fraction are measured. With the change in blade angle, flame shape, flame stabilization, the distribution of temperature and NO$_{x}$ mole fraction are changed considerably.rably.

  • PDF

A study on Linear Pattern Fabrication of Plate-type PC (PC소재의 선형 패턴 제작에 관한 연구)

  • Joung, Y.N.;Lee, E.K.;Kang, C.G.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.277-280
    • /
    • 2008
  • Recently, a demand of nano/micro patterned polymer for display or biochip has been rising. Then many studies have been carried out. Nano/micro-embossing is a deformation process where the workpiece materials is heated to permit easier material flow and then forced over a planar patterned tool. In this work, the hot-emboss process is performed with different forming conditions; forming temperature, load, press hold time, to get the proper condition for linear pattern fabrication on plated-type polymers (PC). Replicated pattern depth increases in proportion to the forming temperature, load and time. Reduction of the workpiece thickness increases according to press hold time. In process of time, reduction ratio of workpiece thickness decreases because of surface area increment of the workpiece and pressure decline on it.

  • PDF

Selective Reduction of Carbonyl Group with Borohydride Exchang Resin (BER)-LiCl System

  • Gyoung, Young-Soo;Yoon, Nung-Min;Jeon, Dae-Hoon
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.3
    • /
    • pp.162-165
    • /
    • 1987
  • The reduction rate of borohydride exchange resin (BER) was greatly enhanced in the presence of lithium salts. Thus 2-heptanone was reduced completely with BER-LiCl in 1 h at room temperature. However, no reduction was observed with BER alone under the same conditions. With this system, organic compounds containing various fuctional groups were examined in ethanol at room temperature. This study revealed that BER-LiCl system exhibits an excellent chemoselectivity for carbonyl group in the presence of other functional groups. Keto esters and epoxy ketones were reduced with BER-LiCl to give the corresponding hydroxy esters and epoxy alcohols with excellent yields. Selective reductions of carbonyl groups were also possible in the presence of other organic compounds containing functional groups such as 1-idooctane, 1-bromooctane, caproamide, hexanenitrile, nitrobenzene, n-butyl disulfide, dimethyl sulfoxide and 1-dodecene.

Effect of Active Nutrient Uptake on Heading Under Low Temperature in Rice

  • Hwang, Woon-Ha;Kang, Jea Ran;Baek, Jung-Sun;An, Sung-Hyun;Jeong, Jae-Heok;Jeong, Han-Yong;Lee, Hyen-Seok;Yun, Jong-Tak;Lee, Gun-Hwi;Choi, Kyung-Jin
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.3
    • /
    • pp.163-170
    • /
    • 2016
  • Heading time is important element for yield and quality in crops. Among day length and temperature which influence on heading, temperature effect has not been investigated well. To investigate temperature effect on heading, heading date and plant growth characters were checked under the low and high temperature conditions in short day length. Analyzing heading date of six Korean varieties under the high and low temperature condition, heading date of varieties were delayed under low temperature. In the low temperature condition, dry weight and area of leaf were reduced. Varieties showing more delay of heading under low temperature also showed more reduction in leaf area. After selecting three varieties showing significant difference in leaf growth and heading date under different temperature conditions, nutrient contents of plant were analyzed. Nitrogen content was reduced in leaf and shoot under the low temperature condition. OsNRT2.3, nitrate transporter, was significantly down regulated in varieties showing more heading delay. Available phosphate content was decreased in leaf, but increased in shoot due to reduction of phosphate mobility. OsPT1, phosphate transporter regulating phosphate uptake, was more down regulated in varieties showing more heading delay. OsPT6, phosphate transporter regulating phosphate transport in plant, was also significantly down regulated in those varieties. With these data, we expected that active nitrogen and available phosphate uptake and transport in plant would increase leaf growth then might reduce heading delay under the low temperature condition.

Experimental Study on DeNOx Characteristics of Urea-SCR System (Urea-SCR 시스템의 DeNOx 특성에 관한 실험적 연구)

  • Ham, Yun-Young;Lee, Seong-Ho;Jung, Hong-Seok;Shin, Dong-Hyun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.180-186
    • /
    • 2009
  • To meet the NOx limit without a penalty of fuel consumption, urea SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, as a basic research to develop an algorithm for urea injection control, the characteristics of engine out NOx emission and behavior of NOx reduction during steady-state and transient conditions were investigated using 2L DI diesel engine. Test results show that on increasing the catalyst temperature the variations in the outlet NOx concentration are faster and maximal allowable $NH_3$ storage exponentially decreases. For change from a low to high engine load, it can be seen that a few seconds after load-step is required to reach full NOx conversion and the adsorbed amount of $NH_3$ at lower temperature desorb during the next temperature increase, causing $NH_3$ slip. Engine out NOx emission needs to be corrected because NOx emissions just after step load is lower than that of steay state condition.

Effect of a Reductant on Production and Characteristics of Tantalum Powder (탄탈륨 분말제조시 분말특성에 미치는 환원제의 영향)

  • Yun, Jae-Sik;Park, Hyeong-Ho;Bae, In-Seong;Lee, Sang-Baek;Yun, Dong-Ju;Kim, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.11 no.12
    • /
    • pp.1047-1051
    • /
    • 2001
  • Purity tantalum powder has been produced by sodium reduction of potassium tantalum fluoride($K_2TaF_7$)in a stainless steel bomb. The influence of experimental variable, such as excess of reductant and temperature of reduction on the yield and quality of the Ta powder has been studied. The excesses of reductant were varied from -20%, -10%, 0%, 5%, 10%, 20%. When -20% excess of sodium was used, the un-reacted sodium remained in the reacted product. The yield of 81% of Ta powder has been achieved by reducing 50g of$K_TaF_7$with 5% sodium in excess of stoichiometric amount in presence of 16.8g of sodium chloride in the charge at a reduction temperature of$905{\circ}C$. The proportion of fine fraction(~325mesh) decreased appreciably with the increase of sodium excess, and the yield of tantalum powder improved from 65% to 94%. The average particle size of Ta Powder is improved from 3 microns to 4 microns in the 5% excess sodium.

  • PDF

Effect of Dispersant on the Characterization of Cu Powders Prepared with Wet-reduction Process (액상-환원법으로 합성된 Cu 분말의 특성에 미치는 분산제의 영향)

  • Kim, Yong-Yee;Kim, Tea-Wan;Park, Hong-Chae;Yoon, Seog-Young
    • Korean Journal of Materials Research
    • /
    • v.17 no.1
    • /
    • pp.50-55
    • /
    • 2007
  • Ultra-fine Copper powder for a conductive paste in electric-electronic field have been synthesized by chemical reduction of aqueous $CuSO_4$ with hydrazine hydrate $(N_2H_4{\cdot}H_2O)$ as a reductor. The effect of reaction conditions such as dispersant and reaction temperature on the particle size and shape for the prepared Cu powders was investigated by means of XRD, SEM, TEM and TGA. Experiments showed that type of dispersant and reaction temperature were affected on the particle size and morphology of the copper powder. When the carboxymethyl cellulose (CMC) was added as a dispersant the relative mono-dispersed and spherical Cu powder was obtained. Cu powders with particle size of approximately 140nm and narrow particle size distribution were obtained from 0.3M $CuSO_4$ with adding of 0.03M CMC and 40ml $N_2H_4{\cdot}H_2O$ at a reaction temperature of $70^{\circ}C$.