• Title/Summary/Keyword: Temperature oscillation

Search Result 307, Processing Time 0.022 seconds

Analysis on the Relationship between the Korean Temperature and the Atmospheric Circulation over the Northern Hemisphere during Winter (우리나라 겨울철 기온과 북반구 대기 순환과의 상관성 분석)

  • Lim, So-Min;Yeh, Sang-Wook;Kim, Gong-Rae
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.187-197
    • /
    • 2012
  • This study investigates the relationship between the Korean temperature and the atmospheric circulation such as Arctic Oscillation, Siberian High and Aleutian Low during the winter (December-January) for the period of 1970-2011. It is found that all indices to represent aforementioned circulations are significantly correlated with Korean winter temperature for the period of 1970 - 2011. There are marked contrasts in such relationship, however, before and after the mid-1980s when a significant regime shift of Korean winter temperature occurred. While Korean winter temperature has a close relationship with Arctic Oscillation after the mid-1980s, its relationship with Siberian High and Aleutian Low is weakened. The composite analysis between a positive and negative phase of Arctic Oscillation before and after the mid-1980s is conducted to examine a recent strengthening of Arctic Oscillation-Korean winter temperature relationship. It is found that the structural changes of low-level wind and the geopotential height at 500 hPa between the two phases of Arctic Oscillation are more effective to influence Korean winter temperature after the mid-1980s. This may induce a close relationship between the Korean winter temperature variability and Arctic Oscillation after the mid-1980s compared to before the mid-1980s.

Condensation oscillation characteristic of steam with non-condensable gas through multi-hole sparger at low mass flux

  • Dandi Zhang;Lili Tong;Xuewu Cao
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.780-791
    • /
    • 2023
  • To study oscillation characteristic of steam and non-condensable gas direct contact condensation through multi-hole sparger at low mass flux, a series of experiments of pure steam and mixture gas condensation have been carried out under the conditions of steam mass flux of 20-120kg/m2s, water temperature of 20-95 ℃ and mass fraction of non-condensable gas of 0-5%. The regime map of pure steam condensation through multi-hole sparger is divided into steam chugging, separated bubble, aggregated bubble and escaping aggregated bubble. The bubbles behavior of synchronization in the same hole columns and desynchronized excitation between different hole columns can be found. The coalescence effect of mixture bubbles increases with water temperature and non-condensable gas content increasing. Pressure oscillation intensity of pure steam condensation first increases and then decreases with water temperature increasing, and increases with steam mass flux increasing. Pressure oscillation intensity of mixture gas condensation decreases with water temperature and non-condensable gas content increasing, which is significantly weaker than that of pure steam condensation. The oscillation dominant frequency decreases with the rise of water temperature and non-condensable gas content. The correlations for oscillation intensity and dominant frequency respectively are developed in pure steam and mixture gas condensation at low mass flux.

Czochralski crystal growth by the accelerated crystal rotation technique (결정봉 회전 가속화 기법에 의한 초크랄스키 결정 성장)

  • 김승태;최정일;성형진
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.18-28
    • /
    • 1998
  • A laboratory experiment was made of a control of temperature oscillation in Czochralski convection. Numerical computation was also made to delineate the control of temperature oscillation. The suppression of temperature oscillation was achieved by varying the rotation rate of crystal rod ($\Omega=\Omega_0(1+A sin 2{\pi}ft/t_p)$), where A denotes the amplitude of rotation rate and f the frequency factor. Based on the inherent dimesionless time period of temperature oscillation ($t_p$), the suppression rate of temperature oscillation was characterized by the mixed convection parameter ($0.217{\leq}Ra/PrRe^2{\leq}1.658$). The optimal values of A and f were also scrutinized. To understand the suppression mechanism of temperature oscillation, the controls of isotherm($\theta$) and equi-vorticity($\omega$) were investigated.

  • PDF

Controller design to diminish oscillation and steady state error in water temperature systems with drive delay

  • Nakamura, Masatoshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1888-1893
    • /
    • 1991
  • Systematic design of a controller for a water temperature system was considered, with the intention of devising an accurate control experiment. The results of an experiment using a water temperature system based on the pole placement regulator showed water temperature oscillation and steady state error. This paper proposed a. method for eliminating both the oscillation and the steady state error. The oscillation was eliminated by a drive delay compensation technique, in which a future state value of the system was predicted through a real time computer simulation. The steady state error was eliminated by an steady state error correction technique, in which an actual steady state heatrate in the system model was replaced by an imaginary heatrate. By combining these two techniques, we obtained an experimental result for water temperature control of 0.01 (.deg. C) accuracy. Furthermore, the proposed method was evaluated relatively by comparing the experimental results using several other methods and proved to be the most accurate and convenient control method for the delay system.

  • PDF

High Frequency Variation of Low Water Temperature due to Arctic Oscillation Around the Western and Southern Coast of Korea During Winter 2017/2018

  • Han, In-Seong;Lee, Joon-Soo;Kim, Ju-Yeon;Hong, Ji-Yeon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.3
    • /
    • pp.328-333
    • /
    • 2019
  • During the winter of 2017/2018, significantly low water temperatures were detected around the western and southern coasts of Korea (WSCK). In this period, sea surface temperature (SST) in the Korea Waters was about $2^{\circ}C$ lower than mean temperature. Using the real-time observation system, we analyzed the temporal variation of SST during this period around the western and southern coasts. Low water temperature usually manifested over a period of about 10 ~ 20 days. The daily Arctic oscillation index was also similarly detectable with the variation of SST. From the cross-correlation function, we compared two periodic variations, which were SST around the WSCK and the Arctic oscillation index. The cross correlation coefficients between both variations were approximately 0.3 ~ 0.4. The time lag of the two time series was about 6 to 7 days. Therefore, significantly low water temperatures during winter in the Korean coastal areas usually became detectable 6 to 7 days after the negative peak of Arctic oscillation.

Characteristics of Thermoacoustic Oscillation in Ducted Flame Burner (관형 연소기의 열음향학적 특성에 관한 연구)

  • 조상연;이수갑
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.621-626
    • /
    • 1997
  • Combustion instability is a common phenomenon in a ducted flame burner and is known as accompanying low frequency oscillation. This is due to the interaction between unsteady heat release rate and sound pressure field, that is, thermoacoustic feedback. In Rayleigh criterion, combustion instability is triggered when the heat additions is in phase with acoustic oscillation. A Rijke type burner with a pre-mixed flame is built for investigating the effect of Reynolds number and equivalence ratio on thermoacoustic oscillation. In addition, the effect of wall temperature is presented. The results suggest that the frequency of max. oscillation is dependent on Reynolds number and equivalence ratio whereas its magnitude is not a strong function of these two parameters. On the other hand, the wall temperature distribution has much strong effects on the oscillation, even creates different mode of acoustic resonance.

  • PDF

Simulation of Pressure Oscillation in Water Caused by the Compressibility of Entrapped Air in Dam Break Flow (댐 붕괴 유동에서 갇힌 공기의 압축성에 의한 물의 압력 진동 모사)

  • Shin, Sangmook
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.1
    • /
    • pp.56-65
    • /
    • 2018
  • Pressure oscillation caused by the compressibility of entrapped air in dam break flow is analyzed using an open source code, which is a two-phase compressible code for non-isothermal immiscible fluids. Since compressible flows are computed based on a pressure-based method, the code can handle the equation of state of barotropic fluid, which is virtually incompressible. The computed time variation of pressure is compared with other experimental and computational results. The present result shows good agreements with other results until the air is entrapped. As the entrapped air bubbles pulsate, pressure oscillations are predicted and the pressure oscillations damp out quickly. Although the compressibility parameter of water has been varied for a wide range, it has no effects on the computed results, because the present equation of state for water is so close to that of incompressible fluid. Grid independency test for computed time variation of pressure shows that all results predict similar period of pressure oscillation and quick damping out of the oscillation, even though the amplitude of pressure oscillation is sensitive to the velocity field at the moment of the entrapping. It is observed that as pressure inside the entrapped air changes quickly, the pressure field in the neighboring water adjusts instantly, because the sound of speed is much higher in water. It is confirmed that the period of pressure oscillation is dominated by the added mass of neighboring water. It is found that the temperature oscillation of the entrapped air is critical to the quick damping out of the oscillations, due to the fact that the time averaged temperature inside the entrapped air is higher than that of surrounding water, which is almost constant.

Stability Analysis of an Accelerator-Driven Fluid-Fueled Subcritical Reactor System

  • Kim, Do-Sam;Cho, Nam-Zin
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.90-95
    • /
    • 1997
  • In this work, linear dynamics of a circulating fluid-fueled subcritical reactor system with temperature feedback and external neutron source was modeled and examined. In a circulating fluid-fuel system, the stable region is slightly moved by a circulation fluid effect. The effects of subcriticality and temperature feedback coefficient on the reactor stability were tested by calculating frequency response of neutron density originated from reactivity perturbation or external source oscillation of system. The amplitude transfer function has a different shape near subcritical region due to the exponential term in the transfer function. The results of the study show that at a slightly subcritical region, low frequency oscillation in accelerator current or reactivity can be amplified depending on the temperature feedback. However, as the subcriticality increases, the oscillation becomes negligible regardless of the magnitude of the temperature feedback coefficient.

  • PDF

Characteristics of Pressure-Drop Oscillations in a Boiling Channel (비등유로의 압력강하 요동특성)

  • Kim, B.J.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.1
    • /
    • pp.132-141
    • /
    • 1995
  • Characteristics of pressure-drop oscillations(PDO) in a boiling channel were studied numerically and compared with experimental data. Effects of initial and boundary conditions on PDO were investigated in terms of oscillation period and amplitude. The period and amplitude of PDO increased with increasing of the compressible volume in the surge tank and the heat input. PDO occurred within the specific range of the fluid temperature, at which oscillation period and amplitude diminished rapidly with the increase of the fluid temperature. The increase of the loss coefficient in fluid supply line resulted in slightly longer oscillation period and larger amplitude. Numerical results showed good agreement with the experimental data.

  • PDF

Experimental Investigation on the Pressure-Drop Instabilities in Boiling Channel (비등유로의 압력강하 불안정성에 대한 실험적 고찰)

  • Kim, B.J.;Shin, K.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.5 no.3
    • /
    • pp.179-186
    • /
    • 1993
  • The characteristics of pressure-drop oscillations(PDO) in boiling channel are studied experimentally. The effects of initial and boundary conditions on PDO are investigated in terms of oscillation period and amplitude. The period and amplitude of PDO are increased with the increase in the compressible volume in surge tank and heat input. However the amplitude of PDO is decreased with fluid temperature under low subcooling condition. Higher initial insurge flowrate resulted in almost invariant oscillation period but lower amplitude. At higher heat input the oscillation of heater wall temperature is significant, whose period is the same as that of pressure-drop instability.

  • PDF