• 제목/요약/키워드: Temperature inversion layer

검색결과 76건 처리시간 0.027초

김해에서 관측한 접지역전층의 특성에 관한 연구 (A Study on the Characteristics of Inversion Layer Observed at Kimhae)

  • 박종길;원경미
    • 한국환경과학회지
    • /
    • 제3권4호
    • /
    • pp.305-315
    • /
    • 1994
  • The field observation was carried out to investigate the characteristics of surface inversion layer at Kimhae using the feild observed date and upper layer meteorological data during 4-5 February 1993. The results of the study can be summarized as follows : The maximum height of surface inversion layer observed at Kimhae is 193m and the height of upper level inversion layer ranges from 2nm to 300m. The surface weather elements was influenced the formation of surface inversion layer. According to the pasquill stability and time variation of temperature with height, both the surface heating from insolation and the disturbance of upper level of inversion layer was influenced the disappearance of inversion layer. And the stability of surface temperature inversion layer generally belongs to the class of F, that of upper level temperature inversion layer commonly to the class of E.

  • PDF

2015년 4월에 제주 서부해역에서 발생한 수온역전층 특성 (Characteristics of Water Temperature Inversion Observed in a Region West of Jeju Island in April 2015)

  • 김성현
    • Ocean and Polar Research
    • /
    • 제42권2호
    • /
    • pp.97-113
    • /
    • 2020
  • In-situ observations were carried out in April 2015 to investigate the occurrence of water temperature inversion in a region west of Jeju Island. Analysis of in-situ in the western part of Jeju island showed that cold water moved to the southeast from the surface to the middle layer and warm water moved from the middle to the lower layer of the northwest direction. The water temperature inversion occurred at 84 stations (63.1%) out of 133 stations. At the boundary of the water temperature inversion layer, it was formed in the middle layer and disappeared. In the strongly appearing, it started from the middle layer to the lower layer. The shape of the water temperature inversion layer was different. As a result of horizontal water temperature slope analysis of the water temperature inversion zone, maximum 0.23℃/km was obtained and the mean was 0.06℃/km. The role of water temperature inversion as an indicator to determine the formation of water front. As a result of the water mass analysis, Jeju Warm Current Water and Tsushima Warm Current Water of high temperature and high salt intruded from the middle to the bottom. In the middle layer occurred as the Yellow Sea Cold Water of low water temperature and low salinity expanded.

계류기구로 관측한 대구시 야간 안정층 특성에 관한 사례연구 (Characteristic of the Nocturnal Inversion Layer observed by Tethersonde in Daegu)

  • 김희종;윤일희;권병혁;허만천
    • 한국환경과학회지
    • /
    • 제11권3호
    • /
    • pp.155-160
    • /
    • 2002
  • Using measured data at Daegu by tethersonde for the period of 1984∼1987, we have investigated the lower atmospheric boundary layer structure including relationships between inversion layer and meteorological factors(wind and temperature), and the inversion strength and inversion height. The inversion layer was defined from the vertical temperature profile and its strength was analyzed with the wind shear as well as the vertical temperature gradient. From October to January, measured inversion layer isn't destroyed, however, in June, after sun rise, it is destroyed by surface heating and mixed layer is developed from surface. According to Pasquill stability classes, the moderately stable cases dominated. It's the larger vertical temperature gradient the lower SBL height. We have introduced B(bulk turbulence scale) which indicated SBL height. It's larger B, the higher SBL height and vice versa. It was noted that the bulk turbulence scale (B) is appropriate to determine the stable boundary layer height.

부산연안에서 관측된 저층대기의 특성에 관한 연구 (Study on the Characteristics of Low Level Atmosphere Observed in Pusan Coastal Ares)

  • 전병일;김유근
    • 한국환경과학회지
    • /
    • 제7권2호
    • /
    • pp.195-202
    • /
    • 1998
  • The low level atmospheric obsewation carried out to Investigate magnitude, formation and dissipation of nocturnal surface Inversion layer, also to survey relation to each meterological parameter In Inversion layer at Pusan power plant for Oct. 13, 1996. As coastal area, the surface Inversion layer height was relatively high(186m), and after sunset unstable layer formated firom surface to around 40m, and the Inversion layer was left still in the upper layer. The surface Inversion layer dissipated at 0920LST perfectly. The layer that strong Inversion layer was formated, showed steep variation of potential temperature and wand speed and relative humidity.

  • PDF

Meteorological Factors Affecting Winter Particulate Air Pollution in Ulaanbaatar from 2008 to 2016

  • Wang, Minrui;Kai, Kenji;Sugimoto, Nobuo;Enkhmaa, Sarangerel
    • Asian Journal of Atmospheric Environment
    • /
    • 제12권3호
    • /
    • pp.244-254
    • /
    • 2018
  • Ulaanbaatar, the capital of Mongolia, is subject to high levels of atmospheric pollution during winter, which severely threatens the health of the population. By analyzing surface meteorological data, ground-based LIDAR data, and radiosonde data collected from 2008 to 2016, we studied seasonal variations in particulate matter (PM) concentration, visibility, relative humidity, temperature inversion layer thickness, and temperature inversion intensity. PM concentrations started to exceed the 24-h average standard ($50{\mu}g/m^3$) in mid-October and peaked from December to January. Visibility showed a significant negative correlation with PM concentration. Relative humidity was within the range of 60-80% when there were high PM concentrations. Both temperature inversion layer thickness and intensity reached maxima in January and showed similar seasonal variations with respect to PM concentration. The monthly average temperature inversion intensity showed a strong positive correlation with the monthly average $PM_{2.5}$ concentration. Furthermore, the temperature inversion layer thickness exceeded 500 m in midwinter and overlaid the weak mixed layer during daytime. Radiative cooling enhanced by the basin-like terrain led to a stable urban atmosphere, which strengthened particulate air pollution.

Tethersonde와 기상탑 관측 자료를 이용한 울산지역 야간 역전에 따른 대기오염도 변화와의 관계 (Nocturnal Inversion Layer observed by Tethersonde and AWS System and its Relation to Air Pollution at Ulsan)

  • 임윤규;김유근;오인보;송상근
    • 한국환경과학회지
    • /
    • 제14권6호
    • /
    • pp.555-563
    • /
    • 2005
  • This study presents the characteristics of nocturnal inversion layer and their effect on the concentration variations of surface air pollutants using tethersonde and automatic weather station (AWS, 2 layer tower) system in Ulsan during 2003, The method for the distinction of inversion intensity was decided based on the sum of nocturnal temperature gradient. As the results, there was a close correlation (correlation coefficient of 0,76) between the maximum inversion height obtained from tethersonde and the sum of nocturnal temperature gradient. The air pollutant concentration was also directly proportional to the inversion intensity. When the inversion intensity was strong in the nighttime, ozone $(O_3)$ concentration was lower, while nitrogen dioxide $(NO_2)$ concentration was higher. The carbon monoxide (CO) concentration was gradually higher according to the nocturnal inversion intensity, whereas sulfur dioxide $(SO_2)$ concentration was relatively constant. In addition, we found that there was no correlation between the inversion intensity and TSP concentration.

CHARACTERISTICS OF LOW LEVEL TEMPERATURE INVERSION IN TAIWAN

  • Liou Yuei-An;Yan Shiang-Kun
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.38-41
    • /
    • 2005
  • The observation data from MTP-5HE ofEPA are used to study the temperature inversion phenomenon in the lower boundary layer in Taipei, Taichung and Kaohsiung of Taiwan. Characteristics of temperature inversion at three cities are extracted using different classification methods. The characteristics of temperature inversion in Taichung and Kaohsiung show a similar trend but are different from that in Taipei. The numbers of the occurrence of temperature inversion in Taichung and Kaohsiung were much larger than that in Taipei. The main types of temperature inversion in Taiwan are radiation inversion and frontal inversion. Compared to frontal inversion, radiation inversion on average occurs at a lower altitude, lasts a longer period, has a deeper thickness, and reaches a higher temperature difference of inversion. Frontal inversion plays a significant role for the inversion event lasting over 12 hours.

  • PDF

역전층이 영동 지역의 활강풍에 미치는 영향에 관한 민감도 수치실험 연구 (A Numerical Sensitivity Experiment of the Downslope Windstorm over the Yeongdong Region in Relation to the Inversion layer of Temperature)

  • 이재규;인소라
    • 대기
    • /
    • 제19권4호
    • /
    • pp.331-344
    • /
    • 2009
  • A sensitivity study has been performed using ARPS (Advanced Regional Prediction System) version 5.2.10 in a downslope windstorm case of 12-13 February 2006. The purpose of this study was to find out the role of the inversion layer of temperature mainly in relation to the strength of the downslope winds over the Yeongdong region located downstream of the Taebaek mountains. Under the conditions of N (Brunt-$V{\ddot{a}}is{\ddot{a}}la$ frequency)=0.008 and N=0.016, the effects of the presence of the inversion layer, its variation of height of the layer, and the depth of the layer were identified. The sensitivity experiments suggested that the inversion layer effected the downstream wind speed of the mountains under both conditions of N=0.008 and N=0.016, and notably when the inversion layer was located near the mountain crest the downstream wind speed of the mountains was strong (~ $27ms^{-1}$) only under the condition of N=0.016. In addition, when the atmosphere was rather stable (N=0.016) and the depth of the layer was relatively thin (765 m) the downstream wind speed of the mountains was the strongest (~ $30ms^{-1}$) among the sensitivity experiments.

A STUDY OF LOW-LEVEL BOUNDARY-LAYER TEMPERATURE INVERSION EVENTS IN TAIWAN

  • Liou, Yuei-An;Yan, Shiang-Kun;Wang, Kuo-Chung
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.320-323
    • /
    • 2006
  • Temperature inversion may cause air pollution problems because air pollutants cannot be dissipated through vertical motion of the atmosphere and are accumulated near the surface. The air quality is worsen gradually if an inversion event lasts for a long time. An inversion event is defined as consecutive temperature profiles with occurrence of the temperature inversion condition. In this paper, temperature inversion events over three major cities on Taiwan are analyzed. They are measured by ground-based microwave radiometers installed in Taipei, Taichung, and Kaohsiung from 2002 to 2004 by the Environment Protection Administration (EPA) of Taiwan. Characteristics of temperature inversion events at the three cities are extracted using different classification methods.

  • PDF

해풍 효과에 의한 저층대기구조 변화의 측정 (Observation on Structural Change of Low Level Atmosphere due to Effect of Sea Breeze)

  • 전병일;김유근
    • 한국환경과학회지
    • /
    • 제5권4호
    • /
    • pp.441-451
    • /
    • 1996
  • The surface meteorological and upper layer meteorological observation carried out to investigate influences of sea breeze effect on lower layer atmosphere at Gori nuclear power plant for 29∼30 July, 1996. According to surface meteorological data, the inflow of sea breeze was occurred 11:30 on 29 July, 10:30-on 30 July, respectively, at observation site. And the meteorological tower data showed that wind direction of sea breeze was identified as south-westerly, and wind speed of 58 m was 2 times stronger than that of 10 m. It is notworthy that surface inversion layer which built from the night time to daybreak of next day was not broken off by seab reeze's inflow for daytime, and strong inversion layer observed at 47∼243 m with moderately stable class (F) by URC. It was found that strong stable layer of potential temperature appeared at that layer, maximum relative humidity observed at the bottom of inversion layer and maximum mixing ratio observed in the low of inversion layer.

  • PDF