• 제목/요약/키워드: Temperature increase rate

검색결과 2,659건 처리시간 0.033초

버섯의 건조특성(乾燥特性)에 관한 연구 (Drying Characteristics of Mushroom)

  • 송성규;고학균;이정호
    • Journal of Biosystems Engineering
    • /
    • 제19권2호
    • /
    • pp.112-123
    • /
    • 1994
  • At present, no appropriate drying conditions can be found for the heated-air drying of mushroom in Korea. Usually, mushroom is being dried at the temperature range of 40 to $50^{\circ}C$ until the moisture content reaches 10~13% (wb). However, drying characteristics of the mushroom should be investigated for quality improvement and efficient drying operation of the mushroom. The results of this study may be summarized as follows ; 1. The effect of air temperature on the rate of drying was greater than that of relative humidity for drying of mushroom, and the rate of drying was increased with increase in the air temperature. 2. Drying rate for Shiitake mushroom showed falling-rate period of drying without constant-rate period of drying. Drying rate for Oyster mushroom showed a short constant-rate period at the initial stage of drying process, and followed by falling-rate period of drying. 3. Exponential and App.-Diffusion models were found to describe well the drying process of Shiitake mushroom. Exponential and Thompson models for Oyster mushroom in which Thompson model was the most suitable for Oyster mushroom. 4. The equilibrium moisture content of the mushroom decreased with decrease in the air temperature and increase in the relative humidity. In room condition($20^{\circ}C$, 54% RH), the calculated values of the equilibrium moisture content showed 11.17% for Shiitake mushroom and 13.19% for Oyster mushroom, respectively.

  • PDF

질화규소 세라믹스의 강도와 침식도 평가에 관한 연구 (Evaluation for the Strength and Erosion Rate on the Silicon Nitride Ceramics)

  • 김부안
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권6호
    • /
    • pp.783-789
    • /
    • 2003
  • An experimental method to investigate the fracture strength and fracture toughness for the silicon nitrides sintered at various sintering temperature is established. The erosion rate for these materials in the various concentration of NaOH solution is also investigated. In result, the fracture strength of Si3N4 is decreased with the increase of sintering temperature. On the other hand, the fracture toughness KIC is increased with the increase of sintering temperature. The erosion rate of silicon nitride in the NaOH solution depend largely on the grain size and the concentration of NaOH solution. The erosion rate of silicon nitride sintered at $1800^{\circ}C$ was much higher than that at $1950^{\circ}C$. These results are due to the unique columnar structure of silicon nitride.

Tobermolite를 이용한 폐수내 인산염제거 (Phosphate Removal in Wastewater by Tobermolite)

  • 임봉수;김대현;이태우
    • 상하수도학회지
    • /
    • 제27권6호
    • /
    • pp.751-759
    • /
    • 2013
  • This study is carried out to get the basic design parameters for phospate removal facilites from wastewater by Tobermolite. The phosphate removal by the apatite formation on the surface was affected by several important factors, temperature, ions present in wastewater stream, contact time, recirculation rate, and etc. In case of the temperature, with the increase of temperature, the apatite formation was accelerated. When temperature increased from $15^{\circ}C$ to $35^{\circ}C$, removal efficiency of phosphate increased from 83 % to 93 %. An increase of calcium and fluoride ion content increase the apatite formation, however, bicarbonate and magnesium ion inhibited the crystallization of apatite. As expected, when the recirculation rate was increased from 1 Q to 3 Q, at EBCT (Empty Bed Contact Time) 60min enhanced removal efficiency was observed. The more the recirculation rate increased, the more the removal efficiency increased. According to the results of column experiment using an actual wastewater with low and high phosphate concentration (5 mg/L and 50 mg/L-P), the removal efficiency was 77 % at EBCT of 45 min, and 80 % at 60 min. It was suggested that optimum EBCT was 45 min.

Ion Flux Assisted PECVD of SiON Films Using Plasma Parameters and Their Characterization of High Rate Deposition and Barrier Properties

  • Lee, Joon-S.;Jin, Su-B.;Choi, Yoon-S.;Choi, In-S.;Han, Jeon-G.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.236-236
    • /
    • 2011
  • Silicon oxynitride (SiON) was deposited for gas barrier film on polyethylene terephthalate (PET) using octamethylycyclodisiloxane (Si4O4C8H24, OMCTS) precursor by plasma enhanced chemical vapor deposition (PECVD) at low temperature. The ion flux and substrate temperature were measured by oscilloscope and thermometer. The chemical bonding structure and barrier property of films were characterized by Fourier transform infrared (FT-IR) spectroscopy and the water vapor transmission rate (WVTR), respectively. The deposition rate of films increases with RF bias and nitrogen dilution due to increase of dissociated precursor and nitrogen ion incident to the substrate. In addition, we confirmed that the increase of nitrogen dilution and RF bias reduced WVTR of films. Because, on the basis of FT-IR analysis, the increase of the nitrogen gas flow rate and RF bias caused the increase of the C=N stretching vibration resulting in the decrease of macro and nano defects.

  • PDF

Cu CMP에서 온도가 재료 제거율에 미치는 영향 (Effects of Temperature on Removal Rate in Cu CMP)

  • 박인호;이다솔;정선호;정해도
    • 한국기계가공학회지
    • /
    • 제17권6호
    • /
    • pp.91-97
    • /
    • 2018
  • Chemical mechanical polishing(CMP) realizes a surface planarity through combined mechanical and chemical means. In CMP process, Preston equation is known as one of the most general approximation of the removal rate. Effects of pressure and relative speed on the mechanical property of Cu CMP has been investigated. On the other hand, The amount of abrasion also increased with changes in pressure and speed, resulting in a proportional increase of temperature during CMP. Especially this temperature is an important factor to change chemical reaction in a Cu CMP. However, when the slurry temperature became higher than $70^{\circ}C$, the removal rate went lower due to abrasives aggregation and scratching occurred on the Cu film. Therefore, it was found that the slurry temperature should not exceed $70^{\circ}C$ during Cu CMP. Finally, authors could increase the pressure, speed and slurry temperature up to a ceratin level to improve the removal rate without surface defects.

경질 폴리우레탄폼의 착화성 및 열방출특성 연구 (A Study on Ignitability and Heat Release Rate Characteristics of Rigid Polyurethane Foam)

  • 공영건;이두형
    • 한국화재소방학회논문지
    • /
    • 제17권4호
    • /
    • pp.117-123
    • /
    • 2003
  • 본 연구에서는 Setchkin 착화성시험장치와 산소소비원리를 이용한 콘칼로리미터를 사용하여 난연처리되지 않은 경질우레탄폼의 착화특성 및 열방출특성 및 플래쉬오버 가능성에 대하여 연구하였다. 연구결과 경질폴리우레탄폼의 유도발화온도(FIT)는 $383^{\circ}C$$390^{\circ}C$, 자연발화온도(SIT)는 $493^{\circ}C$$495^{\circ}C$로 나타났으며 자연발화온도가 유도발화온도에 비해 약 $100^{\circ}C$ 높게 나타났다. 콘칼로리미터실험에서는 착화시간은 heat flux의 크기가 증가할수록 빨라졌으며 동일한 heat flux 크기에서는 밀도가 작을수록 착화시간은 짧게 나타났다. 열방출율은 $50 ㎾\m^2$에서 가장 크게 나타났으며, 최대열방출율의 경우 heat flux의 크기와 밀도가 커질수록 증가하는 경향을 보였다. 착화시간과 열방출율의 관점에서 경질폴리우레탄폼의 화재성능은 가해진 heat flux의 크기와 밀도에 큰 영향을 받는 것으로 나타났으며, Petrella의 제안방법에 의해 플래쉬오버 가능성을 분류한 결과 플래쉬오버 가능성이 큰 것으로 분류되었다.

3.5% NaCl 수용액의 온도변화가 복합조직강의 부식피로파괴에 미치는 영향 (The Effects of 3.5% NaCl Aqueous Solution Temperature on the Corrosion Fatigue Fracture of Dual phase steel)

  • 오세욱;도영문;박수영;김재철;김광영
    • 한국해양공학회지
    • /
    • 제6권1호
    • /
    • pp.140-147
    • /
    • 1992
  • Corrsion fatigue test was performed under rotated bending in 3.5% NaCl aqueous solution having a temperature from 278.deg.K in order to investigate the effects of aqueous solution remperature on the corrosion fatigue fracture of raw material steel(SS41) and dual phase steel that was produced from SS41 by a series of heat treatment. Corrosion fatigue life decreases remarkably with increase in solution temperature or with decrease in stress level. The corrosion fatigue life and the crack propagation rate at 303.deg.K show the similar behaviors with those at 318.deg.K, which is assumed to be caused by concentration polarization phenamena. The number and the lengths of microcracks increase with increase in solution temperature, so they lead to the decrease in corrosion fatigue life.

  • PDF

An experimental study on fatigue performance of cryogenic metallic materials for IMO type B tank

  • Lee, Jin-Sung;You, Won-Hyo;Yoo, Chang-Hyuk;Kim, Kyung-Su;Kim, Yooil
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.580-597
    • /
    • 2013
  • Three materials SUS304, 9% Ni steel and Al 5083-O alloy, which are considered possible candidate for International Maritime Organization (IMO) type B Cargo Containment System, were studied. Monotonic tensile, fatigue, fatigue crack growth rate and Crack Tip Opening Displacement tests were carried out at room, intermediate low ($-100^{\circ}C$) and cryogenic ($-163^{\circ}C$) temperatures. The initial yield and tensile strengths of all materials tended to increase with decreasing temperature, whereas the change in elastic modulus was not as remarkable. The largest and smallest improvement ratio of the initial yield strengths due to a temperature reduction were observed in the SUS304 and Al 5083-O alloy, respectively. The fatigue strengths of the three materials increased with decreasing temperature. The largest increase in fatigue strength was observed in the Al 5083-O alloy, whereas the 9% Ni steel sample showed the smallest increase. In the fatigue crack growth rate test, SUS304 and Al 5083-O alloy showed a decrease in the crack propagation rate, due to decrease in temperature, but no visible improvement in da/dN was observed in the case of 9% Ni steel. In the Crack Tip Opening Displacement (CTOD) test, CTOD values were converted to critical crack length for the comparison with different thickness specimens. The critical crack length tended to decrease in the case of SUS304 and increase for the Al 5083-O alloy with decreasing temperature. In case of 9% Ni steel, change of critical crack length was not observed due to temperature decrease. In addition, the changing material properties according to the temperature of the LNG tank were analyzed according to the international code for the construction and equipment of ships carrying liquefied gases in bulk (IGC code) and the rules of classifications.

Transition State Characterization of the Low- to Physiological-Temperature Nondenaturational Conformational Change in Bovine Adenosine Deaminase by Slow Scan Rate Differential Scanning Calorimetry

  • Bodnar, Melissa A.;Britt, B. Mark
    • BMB Reports
    • /
    • 제39권2호
    • /
    • pp.167-170
    • /
    • 2006
  • Bovine adenosine deaminase undergoes a nondenaturational conformational change at $29^{\circ}C$ upon heating which is characterized by a large increase in heat capacity. We have determined the transition state thermodynamics of the conformational change using a novel application of differential scanning calorimetry (DSC) which employs very slow scan rates. DSC scans at the conventional, and arbitrary, scan rate of $1^{\circ}C/min$ show no evidence of the transition. Scan rates from 0.030 to $0.20^{\circ}C/min$ reveal the transition indicating it is under kinetic control. The transition temperature $T_t$ and the transition temperature interval ${\Delta}T$ increase with scan rate. A first order rate constant $k_1$ is calculated at each $T_t$ from $k_1\;=\;r_{scan}/{\Delta}T$, where $r_{scan}$ is the scan rate, and an Arrhenius plot is constructed. Standard transition state analysis reveals an activation free energy ${\Delta}G^{\neq}$ of 88.1 kJ/mole and suggests that the conformational change has an unfolding quality that appears to be on the direct path to the physiological-temperature conformer.

한국인 기초 신진대사량의 계절에 따른 변동 (Seasonal Variations in the Basal Metabolic Rate of Korean Airmen Volunteers)

  • 이계열;지선호;홍승길;성양호
    • The Korean Journal of Physiology
    • /
    • 제6권2호
    • /
    • pp.23-30
    • /
    • 1972
  • Contrary to most of European and American investigators failed to find out the seasonal variations of basal metabolic rate in man, Japanese and Korean investigators reported the increase in winter, decrease in summer season. But the causes of variation were not found clearly. To find out whether metabolic acclimatization to climate could be arise or not in human being, the basal metabolic rate was determined monthly for a period of one year in Airmen volunteers who live in Seoul, with 9 l Collins spirometer. The results obtained were as follows: 1. The average ambient temperature was lowest in February $(-5.88^{\circ}C)$ and highest in July $(27.34^{\circ}C)$. 2. Basal metabolic rate was lowest in June and highest in December showing seasonal variations. Interestingly, the increase of basal metabolic rate followed after the drop of ambient temperature below $0^{\circ}C$ (December) and the decrease followed after the elevation of ambient temperature from optimum to hot (June) or cold to warm (March). 3, Mean skinfold thickness increased in spring, decreased in winter. 4. These findings indicate that the basal metabolic rate of Korean reveals the seasonal variation affected by ambient temperature highly.

  • PDF