• 제목/요약/키워드: Temperature efficiency

검색결과 5,874건 처리시간 0.036초

고정화 질화세균을 이용한 저농도 암모니아의 고도처리 (II) 초기 암모니아 농도, 온도 그리고 pH의 영향

  • 이정훈;김병진;이민수;나인걸;서근학
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2002년도 생물공학의 동향 (X)
    • /
    • pp.346-348
    • /
    • 2002
  • This study estimated the effect of influent TAN concentration. temperature and pH in the airlift bioreactor(aeration rate; 1.5 vvm, HRT 0.35hr) using immobilized nitrifiers by PVA. At the effect of influent TAN concentration, removal rate was increased with increasing it and removal efficiency maintained 93${\pm}$2%. The optimum temperature for nitrification was $30^{\circ}C$ and at this point. removal efficiency was 95.5${\pm}$1.5%. It was effective to nitrify at $10^{\circ}C$ of low temperature. In the pH range from 7 to 9 in the bioreactor. removal rate and removal efficiency was 310${\pm}$10 $g/m^3$ day and 94${\pm}$3%.

  • PDF

High Efficiency Dye-Sensitized Solar Cells: From Glass to Plastic Substrate

  • 고민재
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2010년도 제39회 하계학술대회 초록집
    • /
    • pp.294-294
    • /
    • 2010
  • Over the last decade, dye-sensitized solar cell (DSSC) has attracted much attention due to the high solar-to-electricity conversion efficiency up to 10% as well as low cost compared with p-n junction photovoltaic devices. DSSC is composed of mesoporous TiO2 nanoparticle electrodes coated with photo-sensitized dye, the redox electrolyte and the metal counter electrode. The performances of DSSC are dependent on constituent materials and interface as well as device structure. Replacing the heavy glass substrate with plastic materials is crucial to enlarge DSSC applications for the competition with inorganic based thin film photovoltaic devices. One of the biggest problems with plastic substrates is their low-temperature tolerance, which makes sintering of the photoelectrode films impossible. Therefore, the most important step toward the low-temperature DSSC fabrication is how to enhance interparticle connection at the temperature lower than $150^{\circ}C$. In this talk, the key issues for high efficiency plastic solar cells will be discussed, and several strategies for the improvement of interconnection of nanoparticles and bendability will also be proposed.

  • PDF

오존과 초음파를 이용한 실리콘 웨이퍼의 Post Sliced Cleaning (Post Sliced Cleaning of Silicon Wafers using Ozone and Ultrasound)

  • 최은석;배소익
    • 한국재료학회지
    • /
    • 제16권2호
    • /
    • pp.75-79
    • /
    • 2006
  • The effect of ozone and/or ultrasound treatments on the efficiency of slurry removal in post sliced cleaning (PSC) of silicon ingot was studied. Efficiency of slurry removal was evaluated as functions of time, temperature and surfactant with DOE (Design of Experiment) method. Residual slurries were observed on the wafer surface in case of cleaning by ozone or ultrasound separately. However, a clean wafer surface was appeared when cleaned with ozone and ultrasound simultaneously. It has found that cleaning time was the main effect among temperature, time and surfactant. Elevated temperature, addition of surfactant and high ozone concentration helped to accelerate efficient removal of slurry. The improvement of removal efficiency seems to be related to the formation of more active OH radicals. The highly cleaned surface was achieved at 10 wt% ozone, 1 min and 10 vol% surfactant with ultrasound. Application of ozone and ultrasound might be a useful method for PSC process in wafer cleaning.

환경변화에 따른 전기이륜차의 에너지소비효율에 관한 연구 (Study of Energy Consumption Efficiency of Electric Two-wheeled Vehicle by Change of Environment Variation)

  • 길범수;김강출
    • 한국자동차공학회논문집
    • /
    • 제20권2호
    • /
    • pp.56-63
    • /
    • 2012
  • Environment has become a main issue nowadays. People began to show big interest in "futuristic means of transportation", which is an efficient method in $CO_2$ emissions reduction and decreasing use of oil. Due to the noise and emissions of two-wheel vehicle of internal combustion engine, electric two-wheeled vehicles have been supplied in downtown. The electric two-wheeled vehicles use battery as power source. The performance of lithium-ion battery changes as the ambient temperature changes. In this paper, analysis of performance variance of electric two-wheeled vehicles influenced by the temperature using the chassis dynamometer and the environmental chamber was carried out.

압전특성 및 부하변화에 따른 압전트랜스포머의 전기적 특성 (Electrical Characteristics of the Piezoelectric Transformer as a Function of Piezoelectric Properties and Load Variations)

  • 민석규;윤광희;류주현
    • 한국전기전자재료학회논문지
    • /
    • 제14권4호
    • /
    • pp.289-296
    • /
    • 2001
  • The piezoelectric transformers of 2.0x10x48 ㎣ size were fabricated with PSN-PMN-PZT(T10 and PNW-PMN-PZT(T2) composition ceramics. Effects of micro structural and piezoelectric properties on the electrical characteristics of the piezoelectric transformers were investigated. Under the fixed output power of 6 W, temperature rise of T1 transformer at the optimum load was smaller than T2 one because of fine grain size effect. Voltage step-up ratio of T1 transformer showed higher value than T2 one T1 transformer showed an excellent properties with voltage step-up ratio of 12.41, efficiency of 95.23% and temperature rise of 7.2$^{\circ}C$ at 200㏀ load resistance. And also, T2 transformer showed an excellent properties with voltage step up ratio of 9.81, efficiency of 95.51% and temperature rise of 9$^{\circ}C$ at 150㏀ load resistance.

  • PDF

다공형 유로를 적용한 전열교환기 소자의 성능향상에 관한 연구 (A Study on Improvement of Performance for Perforated Type Total HEX Element)

  • 곽경민;배철호;김지용;주의성
    • 설비공학논문집
    • /
    • 제19권7호
    • /
    • pp.529-536
    • /
    • 2007
  • The perforated type element for a heat recovery ventilation system has been studied to improve the performance. Four holes of diameter of 6mm are punched out for each flow channel to break the boundary layer development and increase the turbulence. KS cooling and heating conditions and test procedures are applied for study. The efficiencies are compared to those of the typical element with smooth surface. For cooling operations, the temperature, latent and enthalpy efficiencies increase 2.5%, 18% and 8%, respectively. For heating operations, the temperature, latent and enthalpy efficiencies increase 3%, 5% and 3.2%, respectively.

습식온돌시스템과 전기온돌시스템의 열성능 평가 (Thermal Performance Assessment of Wet Ondol and Electric Ondol System)

  • 한병조;구경완
    • 전기학회논문지
    • /
    • 제60권1호
    • /
    • pp.214-220
    • /
    • 2011
  • This paper studies about the assessment of thermal performance between wet ondol system and electric ondol system. Electrical ondol systems shows faster warm-up time, higher floor surface temperature distribution and lower power consumption than wet ondol system. However, if we provide heat regularly wet ondol system which has more heat capacity shows greater thermal storage than electric ondol system. Therefore, we could conclude that wet ondol system which keeps temperature regularly by the thermal storage show better energy-efficiency in case of using the central heating and district heating system. However, Electrical ondol system shows better efficiency in case of using the space during short time or individual heating systems which needs to heat quickly. The Experiment says that electric ondol system has more benefits on timing to reach the set temperature and energy-efficiency than wet ondol system.

외부증착공정(OVD)에서 열전달 및 입자부착에 관한 실험적 연구 (An experimental study of heat transfer and particle deposition during the outside vapor deposition process)

  • 김재윤;조재걸
    • 대한기계학회논문집
    • /
    • 제19권11호
    • /
    • pp.3063-3071
    • /
    • 1995
  • An experimental study has been carried out for the heat transfer and particle deposition during the Outside Vapor Deposition process. The surface temperatures of deposited layers, and the rates, efficiencies and porosities of particle deposition were measured. It is shown that the axial variation of the surface temperature can be assumed to be quasi-steady and that as the traversing speed of burner is increased, the deposition rate, efficiency and porosity increase due to the decreased surface temperature. As the flow rate of the chemicals is increased, both the thickness of deposition layers and the surface temperature increase. Deposition rate also increases, however, deposition efficiency decreases for tests done. Later passes in early deposition stage result in higher surface temperatures due to increased thickness of porous deposited layers, which cause the deposition rate, efficiency, and porosity to decrease.

고효율 태양전지 적용을 위한 저온 투명전극 소재 연구현황 리뷰 (Current Status of Low-temperature TCO Electrode for Solar-cell Application: A Short Review)

  • 박형식;김영국;오동현;팜 뒤퐁;송재천;이준신
    • 신재생에너지
    • /
    • 제17권1호
    • /
    • pp.1-6
    • /
    • 2021
  • Transparent conducting oxide (TCO) films have been widely used in optoelectronic devices, such as OLEDs, TFTs, and solar cells. However, thin films of indium tin oxide (ITO) have few disadvantages pertaining to process parameters such as substrate temperature and sputtering power. In this study, we investigated the requirements for using TCO films in silicon-based solar cells and the best alternative TCO materials to improve their efficiency. Moreover, we discussed the current status of high-efficiency solar cells using low-temperature TCO films such as indium zinc oxide and Zr-doped indium oxide.

회전형 흡수식 제습기에 관한 연구 (A Study on the Rotary Absorptive Dehumidifer)

  • 김영일;김효경
    • 대한설비공학회지:설비저널
    • /
    • 제15권2호
    • /
    • pp.169-181
    • /
    • 1986
  • A numerical analysis has been conducted on the dehumidification phenomena of rotary absorptive dehumidifier. Parameters that affect the dehumidification efficiency, such as regeneration temperature, humidity, rotor angular velocity, air flow rate and regeneration section angle are studied and optimum driving conditions are determined from the results, Furthermore three new types of dehumidification method are developed to improve the efficiency They are named MODE 2, 3 and 4, while the present one MODE 1. Cooling zone has been constructed between regeneration and process Bone in MODE 2 and as a result exit temperature of the process air decreases. MODE 3 an improvement of MODE 2, recirculates the cooling air into the regeneration zone and regeneration input as well as exit temperature decreases. In MODE 4, some of tee regeneration air is recirculated and it cuts down the regeneration input. Among them MODE 3, showed the best dehumidification efficiency.

  • PDF