• Title/Summary/Keyword: Temperature dependence of dielectric constant

Search Result 93, Processing Time 0.023 seconds

Characteristics of c-axis oriented PLT thin films and their application to IR sensor (c-축 배양된 PLT 박막의 특성 및 IR센서 응용)

  • Choi, B.J.;Park, J.H.;Kim, Y.J.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.3
    • /
    • pp.87-92
    • /
    • 1996
  • The PLT thin films on (100) cleaved MgO single crystal substrate have been fabricated by rf magnetron sputtering using a PbO-rich target. The dependence of physical and electrical properties on the degree of c-axis orientation has been studied. The degree of c-axis orientation of PLT thin films depends on fabrication conditions. Fabrication conditions of the PLT thin films were such that substrate temperature, working pressure, gas ratio of $Ar/O_{2}$, and rf power density were $640^{\circ}C$, 10 mTorr, 10 seem, and $1.7\;W/cm^{2}$, respectively. In these conditions, the PLT thin film showed the Pb/Ti ratio of 1/2 at the surface, the resistivity of $8{\times}10^{11}{\Omega}{\cdot}cm$, and dielectric constant of 110. The pyroelectric infrared sensors with these PLT thin films showed the peak to peak voltage of 450 m V and signal to noise ratio of 7.2.

  • PDF

N-Oxidation of Pyrazines by Bromamine-B in Perchloric Acid Medium: Kinetic and Mechanistic Approach

  • Puttaswamy;Shubha, J.P.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.9
    • /
    • pp.1939-1945
    • /
    • 2009
  • Kinetic investigations on the oxidation of pyrazine and four 2-substituted pyrazines viz., 2-methylpyrazine, 2-ethylpyrazine, 2-methoxypyrazine and 2-aminopyrazine by bromamine-B (BAB) to the respective N-oxides have been studied in HCl$O_4$ medium at 303 K. The reactions show identical kinetics being first-order each in $[BAB]_o\;and\;[pyrazine]_o$, and a fractional- order dependence on $[H^+]$. Effect of ionic strength of the medium and addition of benzenesulfonamide or halide ions showed no significant effect on the reaction rate. The dielectric effect is positive. The solvent isotope effect was studied using $D_2$O. The reaction has been studied at different temperatures and activation parameters for the composite reaction have been evaluated from the Arrhenius plots. The reaction showed 1:1 stoichiometry and the oxidation products of pyrazines were characterized as their respective N-oxides. Under comparable experimental conditions, the oxidation rate of pyrazines increased in the order: 2-aminopyrazine > 2-methoxypyrazine > 2-ethylpyrazine > 2-methylpyrazine > pyrazine. The rates correlate with the Hammett $\sigma$ relationship and the reaction constant $\rho$ was found to be -0.8, indicating that electron donating centres enhance the rate of reaction. An isokinetic temperature of $\beta$ = 333 K, indicated that the reaction was enthalpy controlled. A mechanism consistent with the experimental results has been proposed in which the rate determining step is the formation of an intermediate complex between the substrate and the diprotonated species of the oxidant. The related rate law in consistent with observed results has been deduced.

Characteristics of PLT thin films by rf magnetron sputtering (고주파 마그네트론 스펏터링법으로 제조한 PLT 박막의 특성)

  • Choi, B.J.;Park, J.H.;Kim, Y.J.;Choi, S.Y.;Kim, K.W.
    • Journal of Sensor Science and Technology
    • /
    • v.4 no.3
    • /
    • pp.37-42
    • /
    • 1995
  • The PLT thin films on MgO substrate have been fabricated by RF magnetron sputtering and the dependence of properties on fabrication conditions have been studied. The PbO-rich target was used and the optimum fabrication conditions of the PLT thin films were such that substrate temperature, working pressure, $Ar/O_{2}$ ratio, and rf power was $640^{\circ}C$, 10 mTorr, 10:1, and $1.7\;W/cm^{2}$, repectively. In these conditions, the PLT thin film showed the deposition rate of $62.5\;{\AA}/min$, the Pb/Ti ratio of 1/2, and the dielectric constant of 200. The PLT thin film showed good c-axis orientation and crystalinity according to XRD and SEM analysis.

  • PDF