• 제목/요약/키워드: Temperature dependence

검색결과 2,088건 처리시간 0.025초

Linear Temperature Dependence of Magnetic Penetration Depth Length at Low T in an Isotropic Superconductor

  • Nam, Sang-Boo
    • Progress in Superconductivity
    • /
    • 제2권1호
    • /
    • pp.11-14
    • /
    • 2000
  • The notion of the finite pairing interaction energy range Td is shown to result in a linear temperature dependence of the London magnetic penetration depth length, ${\Delta}{\lambda}{/\lambda}(0)=(T/Td)2/\pi)ln2$ at low T in the case of the s-wave pairing state, accounting for data of high Tc superconductor by Hardy et al.

  • PDF

동시 스퍼터법으로 제작한 Bi 초전도 박막의 성장 모델 (Growth Model of Bi-Superconducting Thin Film Fabricated by Co-sputtering Method)

  • Chun, Min-Woo;Park, Yong-Pil
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2002년도 추계종합학술대회
    • /
    • pp.796-799
    • /
    • 2002
  • BSCCO thin films are fabricated via a co-deposition process at an ultra-low growth rate using ion beam sputtering. The sticking coefficient of Bi element exhibits a characteristic temperature dependence. This temperature dependence of the sticking coefficient was explained consistently on the basis of the evaporation and sublimation processes of Bi$_2$O$_3$.

  • PDF

Temperature Dependence of Electrical Parameters of Silicon-on-Insulator Triple Gate n-Channel Fin Field Effect Transistor

  • Boukortt, Nour El Islam;Hadri, Baghdad;Caddemi, Alina;Crupi, Giovanni;Patane, Salvatore
    • Transactions on Electrical and Electronic Materials
    • /
    • 제17권6호
    • /
    • pp.329-334
    • /
    • 2016
  • In this work, the temperature dependence of electrical parameters of nanoscale SOI (silicon-on-insulator) TG (triple gate) n-FinFET (n-channel Fin field effect transistor) was investigated. Numerical device simulator $ATLAS^{TM}$ was used to construct, examine, and simulate the structure in three dimensions with different models. The drain current, transconductance, threshold voltage, subthreshold swing, leakage current, drain induced barrier lowering, and on/off current ratio were studied in various biasing configurations. The temperature dependence of the main electrical parameters of a SOI TG n-FinFET was analyzed and discussed. Increased temperature led to degraded performance of some basic parameters such as subthreshold swing, transconductance, on-current, and leakage current. These results might be useful for further development of devises to strongly down-scale the manufacturing process.

분광계에 의한 Borosilicate계 글라스의 조성 및 온도의존성 평가 (Composition and Temperature Dependence of Structural Changes in Borosilicate Glasses by Spectrometer)

  • 박성제;류봉기
    • 한국재료학회지
    • /
    • 제15권12호
    • /
    • pp.786-790
    • /
    • 2005
  • We investigated the particularity of temperature and composition changes in $xNa_2O{\cdot}(52.5-x)B_2O_3{\cdot}47.5SiO_2$ glasses by use of FT-IR, $^{11}B$ NMR, Raman spectrometer. From FT-IR and $^{11}B$ NMR spectrometer, we thought that tetrahedral boron, $BO_4$ units are created $N_4$ increasing tendency generated near $600^{\circ}C$. It's expected that composition ana heat treatment directly contributed to structural changes, this changes are following to $Na_2O$ increasing or decreasing. caused by $N_4\;and\;BO_4$ units are caused by relatively increasing or decreasing in the glasses' structure. Particularly, $BO_4$ units are converted to $BO_3$ units after $600^{\circ}C$ heat treatment for 50h in the composition of $x<18(R<0.5,\;R=Na_2O/B_2O_3\;mol\%)$. On the order hand, $BO_3$ units are converted to, $BO_4$ units after $600^{\circ}C$ heat treatment for 50h in the composition of $x{\geq}18\;(R>0.5)$. This particularity of composition and temperature dependence of structural changes are similarly represented by Raman analysis results.

$Zn_4$$ GeSe_6$$Co^{2+}$를 첨가한 $Zn_4$$ GeSe_6$:$Co^{2+}$단결정의 광학적 특성 (Optical properties of undoped and $Co^{2+}$-doped $Zn_4$$ GeSe_6$ single crystals)

  • 김덕태
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제10권2호
    • /
    • pp.105-112
    • /
    • 1997
  • Undoped and Co$^{2+}$-doped Zn$_{4}$GeSe$_{6}$ single crystals were grown by the Chemical Transport Reaction method using iodine as a transporting agent. The crystal structure of these compounds determined by X-ray diffraction analysis was monoclinic structure. The direct energy gaps of these compounds were measured and the temperature dependence of the optical energy gap were closely investigated over the temperature range 10-290K. The temperature dependence of the optical energy gap is well presented by the Varshni equation. Also the optical absorption peaks of Zn$_{4}$GeSe$_{6}$ :Co$^{2+}$ single crystal observed, centered at 5437, 6079, 7142, 12950, 13462, 14786 and 15735 $cm^{-1}$ /, can be explained in terms of the electronic transitions of Co$^{2+}$ ions located at Td symmetry of the host materials. According to the crystal-field theory, the crystal-field, Racah and spin-orbit coupling parameters obtained from the absorption bands are given by Dq = 361$cm^{-1}$ /, B = 655$cm^{-1}$ / and .lambda. = 284$cm^{-1}$ / respectively.ively.

  • PDF

Zn2SnSe6 및 Zn4SnSe6:Co2+(0.5mol%) 단결정에서 열역학적 함수의 온도의존성 (Temperature dependence of thermodynamic function in Zn4SnSe6 and Zn4SnSe6:Co2+(0.5mol%) single crystals)

  • 김남오;김형곤;김덕태;송호준
    • 전기학회논문지P
    • /
    • 제52권2호
    • /
    • pp.68-73
    • /
    • 2003
  • $Zn_4SnSe_6$ and $Zn_4SnSe_6:Co^{2+}$ single crystals were grown by the chemical transport reaction(CTR) method. They were crystallized in the monoclinic structure. These temperature dependence of the optical energy gap were closely investigated over the temperature range 10[K]~300[K]. The direct energy gaps of $Zn_4SnSe_6$ and $Zn_4SnSe_6$:$Co^{2+}$ single crystals were given by 2.146[eV] and 2.042[eV] at 300[K]. The temperature dependence of the optical energy gap is well presented by the Varshni equation.

사막형 결정질 실리콘 태양전지의 에미터 구조에 따른 온도 별 특성 변화 분석 (Analysis on Temperature Dependence of Crystalline Silicon Solar Cells with Different Emitter Types for Desert Environment)

  • 남윤정;김수민;강윤묵;이해석;김동환
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.135-139
    • /
    • 2014
  • Different power output of solar cells can be observed at high-temperature regions such as desert areas. In this study, performance dependence on operating temperature of crystalline silicon solar cells with different emitter types was analyzed. Based on the light current-voltage (LIV) measurement, temperature coefficients of short-circuit current density ($J_{SC}$), open-circuit voltage ($V_{OC}$), fill factor (FF) and power conversion efficiency were measured and compared for two groups of crystalline silicon solar cells with different emitter types. One group had homogeneously doped (conventional) emitter and another selectively doped (selective) emitter. Varying the operating temperature from 25 to 40, 60, and $80^{\circ}C$, LIV characteristics of the cells were measured and the properties of saturation current densities ($J_0$) were extracted from dark current-voltage (DIV) curve. From the DIV data, effect of temperature on the performance of the solar cells with different electrical structures for the emitter was analyzed. Increasing the temperature, both emitter structures showed a slight increase in $J_{SC}$ and a rapid degradation of $V_{OC}$. FF and power conversion efficiency also decreased with the increasing temperature. The degrees of $J_{SC}$ increase and $V_{OC}$ degradation for two groups were compared and explained. Also, FF change was explained by series and shunt resistances from the LIV data. It was concluded that the degradation of solar cells shows different values at different temperatures depending on the emitter type of solar cells.

Si $p^+n$ 접합 다이오드의 온도를 고려한 유효 이온화 계수 모델링 (Modeling for Temperature Dependent Effective ionization Coefficient of Si $p^+n$ Junction Diodes)

  • 정용성
    • 대한전자공학회논문지SD
    • /
    • 제41권1호
    • /
    • pp.9-14
    • /
    • 2004
  • 본 논문에서는 Si의 유효 이온화 계수를 온도 함수로 추출하였고, 이 유효 이온화 계수를 이용하여 Si $p^+n$ 접합에서의 항복 전압을 위한 해석적 표현식을 온도 함수로 유도하였다. 100K 300K 및 500K일 경우, 해석적 항복 전압 결과는 $10^{14}cm^{-3}{\~} 10^{17}cm^{-3}$의 농도 범위에서 실험 결과 및 시뮬레이션 결과와 비교하여 오차 범위 $3\%$ 이내로 잘 일치하였다.

탄소나노튜브의 역학적 거동에 관한 온도와 하중부하속도의 의존성 (Temperature and Loading-Rate Dependence on the Mechanical Behavior of Carbon Nanotubes)

  • 정병우;임장근
    • 대한기계학회논문집A
    • /
    • 제30권7호
    • /
    • pp.809-815
    • /
    • 2006
  • The temperature and loading-rate dependence on the mechanical behavior of single-walled carbon nanotubes under axial compression and torsion is examined with classical molecular dynamics simulation. The critical buckling is found to depend on the temperature and loading-rate. The yielding under torsion is also found to depend on the temperature and loading-rate. But it is shown that the compression and torsional stiffness are independent of the varied temperatures and loading-rates.

Analysis of Temperature Dependence of Thermally Induced Transient Effect in Interferometric Fiber-optic Gyroscopes

  • Choi, Woo-Seok
    • Journal of the Optical Society of Korea
    • /
    • 제15권3호
    • /
    • pp.237-243
    • /
    • 2011
  • Thermal characteristics, such as diffusivity and temperature induced change in the fiber mode index of rotation sensing fiber coil are critical factors which determine the time varying, thermo-optically induced bias drift of interferometric fiber-optic gyroscopes (IFOGs). In this study, temperature dependence of the transient effect is analyzed in terms of the thermal characteristics of the fiber coil at three different temperatures. By applying an analytic model to the measured bias in the experiments, comprehensive thermal factors of the fiber coil could be extracted effectively. The validity of the model was confirmed by the fact that the extracted values are reasonable results in comparison with well known properties of the materials of the fiber coil. Temperature induced changes in the critical factors were confirmed to be essential in compensating the transient effect over a wide temperature range.