• 제목/요약/키워드: Temperature condition

검색결과 11,246건 처리시간 0.038초

ENVIROMENTAL CONDITION DURING AIR SHIPMENT OF HORTICULTURAL PRODUCTS FROM OKINAWA TO TOKYO

  • Akinaga, Takayoshi;Kohda, Yoshihiro
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.413-422
    • /
    • 1993
  • Air shipment affords the quickest possible delivery of horticultural products. The price of air shipped horticultural products are relatively high as most of these products are perishable. Usually the temperature in the cargo compartment is not controlled during flight. Thus, special attention should be paid to procooling prior to shipment. The environmental condition during transportation of horticultural products is an essential parameter for maintaining the quality of perishable products. Commonly horticultural products were loaded by ULD(Unit Load Devices) as a container or pallet in the aircraft (except for small aircraft) . Therefore, inside temperature of the container and cargo compartment came into question. Scarce literature on the relationship between environmental condition and quality changes of horticultural products during air shipment can be found. By the stand point of keeping fresh quality, investigations on the actual condition of air shipments were carried out to improve the technique during the distribution process of fresh horticultural products. Temperature, humidity, atmospheric pressure, carbon dioxide, ethylene, impacts, and changes in quality during the air shipment of snapbeans, okras and chrysanthemums were measured. Temperature was measured by recording thermometers, relative humidity by recording hygrometers, atmospheric pressure by a strain -guage type pressure sensor, carbon dioxide by testing tubes, ethylene by sampling bags and a gaschromatograph, impacts and vibrations by impact recorders and a 3D accelerometer. Relationships between environmental conditions and quality changes during air shipments were clarified. It was expected from investigations into actual shipments that the ventilation and insulation properties of air freight containers were related to the quality of agricultural products. Aircraft can no directly load and unload trucks into them. The transshipment is inclined to cause shocks and vibrations, and to invite damages within a short time.

  • PDF

스포츠웨어용 투습방수직물의 열·수분이동 특성에 관한 연구 (A Study on the Heat and Moisture Transport Properties of Vapor-Permeable Waterproof Finished Fabrics for Sports Wear)

  • 손부현;김진아;권오경
    • 한국의류산업학회지
    • /
    • 제2권3호
    • /
    • pp.220-226
    • /
    • 2000
  • This study was to determine the characteristics of vapor-permeable waterproof finished fabric by the coating method. 4 different kinds of coating fabrics (A : wet, porous, polyurethane, B : dry, no porous, polyurethane, C : shape memory polyurethane and D : dry, porous polyurethane) were used, which were developed recently With this sample, moisture transport rate ($40^{\circ}C$, 45%RH & $40^{\circ}C$, 95%RH), changes of coating side's shape by washing times, water repellency rate, contracted length, qmax, heat conductivity, heat keeping rate, heat keeping rate with cotton, heat keeping rate on humidity temperature and humidity within clothing etc. were checked. And it was done in a climate chamber under $20{\pm}2^{\circ}C$, $65{\pm}5%RH$. The results of this study were as follow; In the moisture vapor transmission of sample B and C increased on high temperature and high humidity while sample A and D decreased, on this condition. Qmax rate had high relation with ground fabric's surface properties and the order was A>C>D>B. Heat conductivity had high relation with thickness and surface properties. Heat keeping rates on sweat condition showed around half percents of heat keeping rates on normal condition, but had no relation with moisture vapor transport rate. Changes of the fabric's properties by washing times were different in accordance with the construction of fabrics and the coating resin. Sample C had tow heat keeping rate on the high temperature and humidity and high heat keeping rate on the low temperature and humidity Moisture transport rate of vapor-permeable waterproof finished fabrics had high relation with the properties of ground fabrics on low humidity condition, but on the high humidity condition, it was highly related with the properties of coating resin.

  • PDF

병렬 연결된 다중 증발기 구조 2상 유동 순환형 열사이폰의 부분부하 및 저온운전 특성에 관한 실험적 연구 (Experimental Study on the Two Phase Thermosyphone Loop with Parallel Connected Multiple Evaporators under Partial Load and Low Temperature Operating Condition)

  • 강인석;최동규;김택영
    • 설비공학논문집
    • /
    • 제16권11호
    • /
    • pp.1051-1059
    • /
    • 2004
  • Two phase thermosyphone loop for electronics cooling are designed and manufactured to test its performance under the partial load and low environment temperature conditions. The thermosyphone device has six evaporators connected parallel for the purpose of cooling six power amplifier units (PAU) independently. The heater modules for simulating PAUs are adhered with thermal pad to the evaporator plates to reduce the contact resistance. There are unbalanced distributions of liquid refrigerant in the differently heated evaporators due to the vapor pressure difference. To reduce the vapor pressure differences caused by partial heating, two evaporators are connected each other using the copper tube. The pressure regulation tube successfully reduces these unbalances and it is good candidates for a field distributed systems. Under the low environment temperature operating condition, such as $-30^{\circ}C$, there may be unexpected subcooling in condenser. It leads the very low saturation pressure, and under this condition there exists explosive boiling in evaporator. The abrupt pressure rise due to the explosive boiling inhibits the supplement of liquid refrigerant to the evaporator for continuous cooling. Finally the cooling cycle will be broken. For the normal circulation of refrigerant there may be an optimum cooling air flow rate in condenser to adjust the given heat load.

저온습윤 및 변온처리가 자생식물의 종자발아에 미치는 영향 (Effect of Prechilling and Alternating Temperature on Seed Germination of Native Plants)

  • 강치훈;김두환
    • 한국자원식물학회지
    • /
    • 제13권3호
    • /
    • pp.202-207
    • /
    • 2000
  • 자생식물 16종의 종자형질 특성 및 저온습윤 및 변온 처리에 의한 발아양상을 조사하기 위하여 본실험은 수행되었다. 종에 따라 종자의 길이, 넓이, 폭은 각각 1.1∼8.9, 0.7∼7.5, 0.4∼l.7mm의 범위였으며 천립중은 0.1∼8.8g의 범위였다. 무처리에서 발아율이 가장 높은 종에 있어 냉이와 익모초는 암조건에서 각각 16, 36%이었으며 장구채와 각시취는 명조건에서 각각 69, 81%이었다. 참취, 고려엉겅퀴, 곰취, 질경이, 청옥취는 저온습윤처리 명조건에서 각각 84, 29, 57, 78, 95%로 물엉겅퀴는 암조건에서 30%로 발아율이 가장 높았다. 변온처리에서 발아율이 높은 종에 있어 두릅나무와 벌개미취는 명조건에서 각각 2,57%로, 수리취는 암조건에서 52%로 가장 높았다.

  • PDF

DEVELOPMENT OF AN AUTOMATIC ENVIRONMENTAL CONTROL SYSTEM FOR LOW TEMPERATURE STORAGE HOUSE USING INTERNET

  • Chung, H.;Yun, H.S.;Lee, W.O.;Lee, K.H.;Cho, Y.K.;Park, W.K.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2000년도 THE THIRD INTERNATIONAL CONFERENCE ON AGRICULTURAL MACHINERY ENGINEERING. V.III
    • /
    • pp.676-683
    • /
    • 2000
  • For high quality storage of agricultural products, temperature, humidity and gas conditions in a storage house should be controlled properly. But most of the low temperature storage house is depending on temperature control. This study aimed to develop an automatic control system for low temperature storage house that can control storage conditions such as temperature, humidity and $CO_2$ gas concentration. The developed system alarms the user, by telephone or beeper, when abnormal condition has occurred. The farmer can also monitor the inside condition of warehouse in his residence, by Internet. From the results of the performance test, the temperature and relative humidity in the warehouse is controlled within the range of ${\pm}0.5^{circ}C$ and ${\pm}2%$, respectively.

  • PDF

자동차용 기관의 냉각수 온도조절 최적화에 관한 연구(I) (A Study on the Optimum Cooling Water Temperature Control of an Automotive Engine(I))

  • 박경석;신진식;이경우
    • 오토저널
    • /
    • 제14권2호
    • /
    • pp.34-43
    • /
    • 1992
  • The purpose of this study is to consider the performance and exhaust characteristics in the practical engine according to the cooling water temperature change of engine and to set up the optimum cooling condition and to obtain the optimum operating condition of thermostat in the cooling system. In order to accomplish the purpose of this study, authors have used the following procedure. 1. This study is to investigate the influence of the cooling water temperature on the engine performance and the exhaust gas, authors regulated the cooling water temperature by using the special closing circuit and measured the concentration of exhaust gas by using the exhaust gas measuring system in the exhaust pipe. 2. This study carried out the experiment by regulating the opening degree of throttle valve and engine speed in the dynamometer and by changing the cooling water temperature, at the same time kept air-fuel ratio constant and made the spark ignition time MBT(Minimum spark advance for Best Torque) 3. This study measured the cooling water temperature by using the K-type thermocouple centring around the easy over-heated parts and by installing a special closing circuit. Therefore, in this study, authors intend to examine the influence of the cooling water temperature on the engine performance, exhaust gas and present the basic materials needed in the engine design including the optimum operating time control system for the cooling water temperature.

  • PDF

열펌프 성능향상을 위한 공기 열교환기 부착효과 (Attachment of the Air Heat Exchanger for COP Improvement in the Heat Pump)

  • 노정근;송현갑;박용규
    • Journal of Biosystems Engineering
    • /
    • 제27권3호
    • /
    • pp.235-240
    • /
    • 2002
  • Performance of the heat pump with attaching an air heat exchanger was investigated in the heating condition when the air heat exchanger was worked in the ambient air temperature of -5 to 11$\^{C}$ and air flow rate of 542 to 747 ㎡/h. Performance tests for heating condition were conducted in an experimental room equipped with heat pump. The performance tests were performed in a ambient temperature of -4 ∼ 11$\^{C}$, and room temperature of 4∼22$\^{C}$ respectively. Measured data(temperature, capacity of heat transfer and consumption of electronic power) were analyzed to the efficiency of HEEVA(Heat Exchanger fur the Evaporator), overall heat transfer coefficient and COP of heat pump. The results of inlet temperature for evaporator increased that the temperature was 2 ∼6$\^{C}$, and inlet temperature for condenser decreased that the temperature was 3 ∼ 8$\^{C}$. The results of comparing efficiency of HEEVA for the ratio of heat exchange between hot air and cold air showed that efficiency were considered to 91% because of the ratio of 83∼98%. The results of comparing of COP for the heat pump increased that improvement COP was approximately 0.3∼7.5 than HEEVA had not been operated.

Halobacterium halobium 의 생육조건 및 Protease 에 관한 연구 (A Study on Growth Condition and Proteolytic Enzyme of Halobacterium halobium)

  • 민윤식
    • 한국식품영양과학회지
    • /
    • 제23권5호
    • /
    • pp.856-862
    • /
    • 1994
  • In salt-preserved foods of every kinds, it was examined the growth condition of halophilic bacteria that induced a change of colour, taste, nutritive substance, a production condition of enzyme and a character of crude enzyme. Used bacteria is H. halobium a kind of extremely halophilic bacteria, and the required of optimum culture needed a quite long time of crude enzyme production is 168 hours. Optimum pH is about 7-7.5, so the traditional food of such neutrality pH as soybean paste and soy sauce particularly come into trouble because the growth can flourish in neutrality or alkaliescence, and the crude enzyme also appeared that best activation between pH 6 and pH 8. The optimum temperature is about 37$^{\circ}C$, the optimum temperature of enzyme is about 40 $^{\circ}C$ and the temperature stability is settled for 15 minutes and it is completely inactivated at 10 minutes. In the influence of each metal ion, Fe++ and Mn++ a stimulated the growth of H.halobium and the activation of enzyme, Cu++ and Zn++ were identified that made the growth and the activation of enzyme inhibit.

  • PDF

과급을 이용한 저온 디젤 연소의 운전영역 확장 및 배기 배출물 저감 (Expansion of Operating Range and Reduction of Engine out Emission in Low Temperature Diesel Combustion with Boosting)

  • 심의준;한상욱;장진영;박정서;배충식
    • 한국자동차공학회논문집
    • /
    • 제17권5호
    • /
    • pp.31-38
    • /
    • 2009
  • Supercharging system was adopted to investigate the influence of boost pressure on operating range and exhaust emissions by using a supercharger at low temperature diesel combustion (LTC) condition in a 5-cylinder 2.7 L direct injection diesel engine. The experimental parameters such as injection quantity, injection timing, injection pressure and exhaust gas recirculation (EGR) rate were varied to find maximum operating range in LTC condition. As a result of adopting increased boost pressure in LTC, wider operating range was achieved compared with naturally aspirated condition due to increased mixing intensity. Increased boost pressure resulted in lower hydrocarbon (HC) and carbon monoxide (CO) emissions due to increased swirl rate and mixing intensity, which induced complete combustion. Moreover, increased boost pressure in LTC resulted in much lower soot emissions compared with high speed direct injection (HSDI) condition.

연료의 임계조건을 고려한 디젤 액상분무거동에 관한 연구 (A Study of the Behavior of Liquid Phase Spray Considering Critical Condition of the Fuel)

  • 박종상;김시범;정성식;하종률;염정국
    • 대한기계학회논문집B
    • /
    • 제31권5호
    • /
    • pp.467-472
    • /
    • 2007
  • In this study the penetration distance of liquid phase fuel(i.e. liquid phsae length) was investigated in evaporative field. An exciplex fluorescence method was applied to the evaporative fuel spray to measure and investigate both the liquid and the vapor phase of the injected spray. For accurate investigation, images of the liquid and vapor phase regions were recorded using a 35mm still camera and CCD camera, respectively. Liquid fuel was injected from a single-hole nozzle (l/d=1.0mm/0.2mm) into a constant-volume chamber under high pressure and temperature in order to visualize the spray phenomena. Experimental results indicate that the liquid phase length decreased down to a certain constant value in accordance with increase in the ambient gas density and temperature. The constant value, about 40mm in this study the, is reached when the ambient density and temperature of the used fuel exceed critical condition.