• 제목/요약/키워드: Temperature and precipitation

검색결과 2,211건 처리시간 0.029초

우리나라의 월강수량과 범지구적 해수면온도의 상관성 분석 (Correlation Analysis between Monthly Precipitation in Korea and Global Sea Surface Temperature)

  • 오태석;문영일
    • 대한토목학회논문집
    • /
    • 제28권2B호
    • /
    • pp.237-248
    • /
    • 2008
  • 우리나라에서 발생하는 강수량의 특성은 지협적인 원인이기 보다는 해수면 온도와 같은 기상 현상에 많은 영향을 받고 있다. 따라서 본 연구에서는 우리나라의 기상청에서 관측하는 61개 강우관측소의 월강수량과 범지구적 해수면 온도와의 상관관계를 분석하였다. 우리나라 강우량과 범지구적 해수면 온도와의 상관성 분석을 위해 군집분석과 주성분 분석을 통해 월강우량의 주요 성분을 추출하였다. 추출된 월강우량의 주요 성분과 범지구적 해수면 온도와의 상관성 분석을 통해 우리나라의 월강수량은 태평양에서 관측되는 해수면 온도와 통계적으로 유의한 상관관계를 갖는 해수면 온도 구역을 확인할 수 있었다. 또한, 월강수량의 Wavelet Transform 분석을 통해 2년과 4년 사이의 주기에서 강한 주성분을 갖는 것으로 나타났으며, 월강수량의 저빈도 특성을 확인할 수 있었다. 월강수량의 저빈도 주기 성분과 해수면 온도와의 상관성 분석에서 큰 상관성을 갖는 것으로 나타났으며, 이를 통해 해수면 온도를 이용한 강우량의 예측 가능성을 제시하였다.

수열합성법을 이용한 TiO2 나노 입자의 합성 (Synthesis of Nano-sized TiO2 Powder using a Hydrothermal Process)

  • 김강혁;이우진;김동규;이성근;이상화;김인수
    • 대한금속재료학회지
    • /
    • 제48권6호
    • /
    • pp.543-550
    • /
    • 2010
  • This paper investigated the synthesis conditions of nano-sized $TiO_2$ powder in a hydrothermal process at a temperature range of $100{\sim}180^{\circ}C$ considering the precipitation agent, precipitation pH, reaction temperature and time. Titanium hydroxide formed by $NH_4OH$ exhibited a lower crystallization temperature than that by NaOH and formed less aggregated $TiO_2$ particles. As the precipitation pH increased above 8, the shape of the particles changed from spherical to needle form, which appeared to be caused by dissolution and re-precipitation of the titanium hydroxide in an alkali environment.

수도권 지역의 도시 기상 특성 (Characteristics of Urban Meteorology in Seoul Metropolitan Area of Korea)

  • 김연희;최다영;장동언
    • 대기
    • /
    • 제21권3호
    • /
    • pp.257-271
    • /
    • 2011
  • The aim of this study is to examine weather modification by urbanization and human activities. The characteristics of the urban heat island (UHI) and precipitation in Seoul metropolitan area of Korea are investigated to demonstrate that cities can change or modify local and nearby weather and climate, and to confirm that cities can initiate convection, change the behavior of convective precipitation, and enhance downstream precipitation. The data used in this study are surface meteorological station data observed in Seoul and its nearby 5 cities for the period of 1960 to 2009, and 162 Automatic Weather System stations data observed in the Seoul metropolitan area from 1998 to 2009. Air temperature and precipitation amount tend to increase with time, and relative humidity decreases because of urbanization. Similar to previous studies for other cities, the average maximum UHI is weakest in summer and is strong in autumn and winter, and the maximum UHI intensity is more frequently observed in the nighttime than in the daytime, decreases with increasing wind speed, and is enhanced for clear skies. Relatively warm regions extend in the east-west direction and relatively cold regions are located near the northern and southern mountains inside Seoul. The satellite cities in the outskirts of Seoul have been rapidly built up in recent years, thus exhibiting increases in near-surface air temperature. The yearly precipitation amount during the last 50 years is increased with time but rainy days are decreased. The heavy rainfall events of more than $20mm\;hr^{-1}$ increases with time. The substantial changes observed in precipitation in Seoul seem to be linked with the accelerated increase in the urban sprawl in recent decades which in turn has induced an intensification of the UHI effect and enhanced downstream precipitation. We also found that the frequency of intense rain showers has increased in Seoul metropolitan area.

기후변동에 대한 한국 하천유량의 탄력성 (Climate Elasticity of Korean Streamflows)

  • 정일원;장희준;배덕효
    • 한국수자원학회논문집
    • /
    • 제43권10호
    • /
    • pp.851-864
    • /
    • 2010
  • 본 연구에서는 강수량과 기온의 변동에 따른 국내 하천유량의 민감도를 평가하였다. 8개상류 다목적댐 유입량과 기후자료를 이용하여 기후가 유출량 변화에 미치는 영향을 분석하였다. 결과적으로 연유출량의 변화는 강수의 변화에 크게 영향을 받았지만 강수량이 평년에 비해 적고 기온이 높은 연도에서는 기온이 낮은 연도에 비해 연유출량이 더 크게 감소하는 경향을 보였다. 이러한 유출변화 특성은 한국의 수자원이 지구온난화로 인한 기온증가 상황에서 가뭄피해에 더 취약해질 가능성을 보여주었다. 또한, 본 연구에서는 공간적인 기후탄력성을 평가하기 위해 109개 중권역에 PRMS 모형을 적용하고 이 결과를 이용하여 기후탄력성을 평가하였다. 국내의 기후탄력성은 1.5~1.9로, 강수가 +20% 증가할 경우 연유출량은 +30~+38% 정도 증가되는 것으로 나타났다.

영동대설 사례와 관련된 동해상의 현열속과 잠열속 분포 특성 (Characteristics of Sensible Heat and Latent Heat Fluxes over the East Sea Related with Yeongdong Heavy Snowfall Events)

  • 김지언;권태영;이방용
    • Ocean and Polar Research
    • /
    • 제27권3호
    • /
    • pp.237-250
    • /
    • 2005
  • To investigate the air mass modification related with Yeongdong Heavy snowfall events, we examined sensible and latent heat fluxes on the East Sea, the energy exchange between atmosphere and ocean in this study. Sensible and latent heats were calculated by a bulk aerodynamic method, in which NCEP/NCAR reanalysis data and NOAA/AVHRR weekly SST data with high resolution were used. Among winter precipitation events in the Yeongdong region, 19 heavy precipitation events $(1995{\sim}2001)$ were selected and classified into three types (mountain, cold-coastal, and warm types). Mountain-type precipitation shows highly positive anomalies of sensible and latent heats over the southwestern part of the East Set When separating them into the two components due to variability of wind and temperature/ specific Humidity, it is shown that the wind components are dominant. Cold-coastal-type precipitation also shows strong positive anomalies of sensible and latent heats over the northern part and over the central-northern part of the East Sea, respectively. It is shown that the sensible heat anomalies are caused mostly by the decrease of surface air temperature. So it can be explained that cold-coastal-type precipitation is closely related with the air mass modification due to cold air advection over warm ocean surface. But in warm-type precipitation, negative anomalies are found in the sensible and latent heat distributions. From this result, it may be postulated that warm-type precipitation is affected by the internal process of the atmosphere rather than the atmosphere-ocean interaction.

최근 동계작물의 파종기간 동안 기후변화 특징 (Characteristics of Climate Change in Sowing Period of Winter Crops)

  • 심교문;김용석;정명표;최인태
    • 한국기후변화학회지
    • /
    • 제6권3호
    • /
    • pp.203-208
    • /
    • 2015
  • This study was conducted to provide the agricultural climatological basic data for the reset of sowing period of the winter crop on the double cropping system with rice. During the past 30 years from 1981 to 2010, mean air temperature has risen by $0.45^{\circ}C$ per 10 years (with statistical significance), while precipitation has decreased by 6.74 mm per 10 years and the numbers of days for precipitation has reduced by 0.23 days per 10 years (with no statistical significance) in the sowing period ($1^{st}$ Oct. to $5^{th}$ Nov.) of winter crop. It was analyzed that double cropping system of rice and winter crops need to be reset in the way of delaying the sowing time of winter crops, because rising trend of temperature was clear while variability of precipitation was great and the trend was not clear in the sowing period of winter crops. We have also analyzed the meteorological features of the sowing period of winter crops in 2014, and found that mean air temperature in 2014 was higher than that in normal years (similar to recent temperature change feature) while precipitation in 2014 was much more frequent than that in normal years (unlike recent precipitation features). Such tendency in 2014 made the sowing of winter crops difficult because mechanical sowing could not be worked in flooded paddy fields. Heavy rain in October 2014 was also analyzed as a rare phenomenon.

기후변화에 따른 농업용수공급패턴의 변화로 인한 이수안전도변화분석 (Water Supply Reliability Revaluation For Agricultural Water Supply Pattern Changes Considering Climate Changes)

  • 최영돈;안종서;신현석;차형선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2010년도 학술발표회
    • /
    • pp.273-277
    • /
    • 2010
  • This research was performed to examine changes in the timing of the growth of crops along with changes in temperatures due tochanges and to analyze the change of water-supply-reliability by adding an analysis of the change of agricultural water supply patterns in the basin area of Miryang dam in Korea. Had-CM3 model from U.K. was the tool adopted for the GCM model, a stochastic, daily-meteorology-generation-model called LARS-WG was alsoused for downscaling and for the climate change scenario (A1B) which represents Korea's circumstances best. First of all, to calculate changes in the timing of the growth of crops during this period, the theory of GDD was applied. Except for the period of transplanting and irrigation, there was no choice but to find the proper accumulated temperature by comparing actual temperature data and the supply pattern of agricultural use due to limited temperature data. As a result, proper temperatures were found for each period. $400^{\circ}C$ for the preparation period of a nursery bed, $704^{\circ}C$ for a nursery bed's period, $1,295^{\circ}C$ for the rice-transplanting period, $1,744^{\circ}C$ for starting irrigation, and $3,972^{\circ}C$ for finishing irrigation. To analyze future agricultural supply patter changes, the A1B scenario of Had-CM3 model was adopted, and then Downscaling was conducted adopting LARS-WG. To conduct a stochastical analysis of LARS-WG, climate scenarios were generated for the periods 2011~2030, 2046~2065, 2080~2099 using the data of precipitation andMax/Min temperatures collected from the Miryang gauging station. Upon reviewing the result of the analysis of accumulated temperatures from 2011~2030, the supply of agricultural water was 10 days earlier, and in the next periods-2046~2065, 2080~2099 it also was 10 days earlier. With these results, it is assumed that the supply of agricultural water should be about 1 month ahead of the existing schedule to meet the proper growth conditions of crops. From the results of the agricultural water supply patterns should be altered, but the reliability of water supply becomes more favorable, which is caused from the high precipitation change. Furthermore, since the unique characteristics of precipitation in Korea, which has high precipitation in the summer, water-supply-reliability has a pattern that the precipitation in September could significantly affect the chances of drought the following winter and spring. It could be more risky to make changes to the constant supply pattern under these conditions due to the high uncertainty of future precipitation. Although, several researches have been conducted concerning climate changes, in the field of water-industry, those researches have been solely dependent on precipitation. Even so, with the high uncertainty of precipitation, it is difficult for it to be reflected in government policy. Therefore, research in the field of water-supply-patterns or evapotranspiration according to the temperature or other diverse effects, which has higher reliability on anticipation, could obtain more reliable results in the future and that could result in water-resource maintenance to be safer and a more advantageous environment.

  • PDF

미래 강수량 자료만을 이용한 SWAT모형의 유출 예측 (Prediction of SWAT Stream Flow Using Only Future Precipitation Data)

  • 이지민;금동혁;김영석;김윤중;강현우;장춘화;이관재;임경재
    • 한국물환경학회지
    • /
    • 제29권1호
    • /
    • pp.88-96
    • /
    • 2013
  • Much attention has been needed in water resource management at the watershed due to drought and flooding issues caused by climate change in recent years. Increase in air temperature and changes in precipitation patterns due to climate change are affecting hydrologic cycles, such as evaporation and soil moisture. Thus, these phenomena result in increased runoff at the watershed. The Soil and Water Assessment Tool (SWAT) model has been used to evaluate rainfall-runoff at the watershed reflecting effects on hydrology of various weather data such as rainfall, temperature, humidity, solar radiation, wind speed. For bias-correction of RCP data, at least 30 year data are needed. However, for most gaging stations, only precipitation data have been recorded and very little stations have recorded other weather data. In addition, the RCP scenario does not provide all weather data for the SWAT model. In this study, two scenarios were made to evaluate whether it would be possible to estimate streamflow using measured precipitation and long-term average values of other weather data required for running the SWAT. With measured long-term weather data (scenario 1) and with long-term average values of weather data except precipitation (scenario 2), the estimate streamflow values were almost the same with NSE value of 0.99. Increase/decrease by ${\pm}2%$, ${\pm}4%$ in temperature and humidity data did not affect streamflow. Thus, the RCP precipitation data for Hongcheon watershed were bias-corrected with measured long-term precipitation data to evaluate effects of climate change on streamflow. The results revealed that estimated streamflow for 2055s was the greatest among data for 2025s, 2055s, and 2085s. However, estimated streamflow for 2085s decreased by 9%. In addition, streamflow for Spring would be expected to increase compared with current data and streamflow for Summer will be decreased with RCP data. The results obtained in this study indicate that the streamflow could be estimated with long-term precipitation data only and effects of climate change could be evaluated using precipitation data as shown in this study.

침적침전법에 의해 제조된 Cu-Mn 촉매의 활성 및 특성 (Activity and Characteristics of Cu-Mn Oxide Catalyst Prepared by the Deposition-Precipitation Method)

  • 김혜진;최성우;이창섭
    • 한국대기환경학회지
    • /
    • 제22권3호
    • /
    • pp.373-381
    • /
    • 2006
  • The catalytic combustion of toluene was investigated on the Cu-Mn oxide catalysts prepared by the deposition-precipitation method. Experiment of toluene combustion was performed with a fixed bed flow reactor in the temperature range of $100{\sim}280^{\circ}C$. Among the catalysts, 1.29Cu/Mn showed the most activity at $260^{\circ}C$. The deposition-precipitation method may be showed the potential to enhance the activity of catalysts. The catalysts were characterized by BET, scanning electron microscopy (SEM), temperature-programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) techniques. On the basis of catalyst characterization data, the results showed that the surface of catalysts by deposition-precipitation method had uniform distribution and smaller particle size, which enhanced the reduction capability of catalysts. The XRD results showed that $Cu_{1.5}Mn_{1.5}O_{4}$ spinel phase was made by deposition-precipitation method, and increased catalyst activity and redox characteristic. It was assumed that the reduction step of $Cu_{1.5}Mn_{1.5}O_{4}$ spinel phase progressed $Cu_{1.5}Mn_{1.5}O_{4}\;to\;CuMnO_{2},\;and\;Cu_{2}O\;to\;CuMn_{2}O_{4}\;and\;Cu$.

극저탄소강의 고용 탄소 함량에 미치는 시멘타이트 석출 속도 모델링 (Modeling of Cementite Precipitation Kinetics on Solute Carbon Content in Extra and Ultra Low Carbon Steels)

  • 최종민;박봉준;김성일;이경섭;이경종
    • 대한금속재료학회지
    • /
    • 제48권3호
    • /
    • pp.187-193
    • /
    • 2010
  • The solute carbon content in ferrite is one of the important factors to obtain good formability in low carbon steels. Although most of the carbons are consumed by the formation of grain boundary cementite during coiling after hot-rolling, the carbon content after coiling is normally observed much more than that of equilibrium. In this study, a classical nucleation and growth model is used to simulate the precipitation kinetics of the grain boundary cementite from coiling temperature (CT) to room temperature (RT). The predicted precipitation behaviors depending on the initial carbon content and the cooling rate are compared with the reported. As a result, the lateral growth of thickening of cementite is a major factor for the sluggish reaction of grain boundary cementite. The reduction of solute carbon content after coiling is divided into three regions: a) increase due to no cementite precipitation, b) decrease due to the fast length-wise growth of cementite, c) increase due to the slow thickness-wise growth of cementite.