• Title/Summary/Keyword: Temperature Variation Rate

Search Result 994, Processing Time 0.026 seconds

A Study on Dielectric Properties of PMN-PSS-PZI ceramics with Ni, Mn (Ni, Mn가 첨가된 PMN-PSS-PZT 세라믹스의 유전 특성에 관한 연구)

  • Shin, Hyea-Kyoung;Kim, Hyun-Chul;Soung, Nak-Jin;Bae, Seon-Gi
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.764-767
    • /
    • 2004
  • This study was to measure the minuteness structure, dielectric properties of (0.3-x)PMN - XPSS-0.7PZT+0.5wt%NiO+0.5wt%$MnO_2$(x=0.05, 0.10, 0.15, 0.20, 0.25)ceramics according to sintering temperature and PSS moi percentage after manufacturing the specimens with a general method. the results of this study were gotten such as follows. The crystal structure of ceramic has the rombohedral structure in XRD. it appeared that addition of Ni, Mn additive was helpful to the formation of stable structure. Dielectric constant at $20^{\circ}C$ showed its maximum value 890.001 in specimens sintered at $1000^{\circ}C$, x=0.15mol. and dielectric loss showed its minimum value 6.95[%] in specimens sintered at $1000^{\circ}$, x=0.05mol. The variation rate of dielectric constant according to the change of frequency was decreased by increasing frequency, The variation rate of dielectric constant according to the change of temperature was increased by increasing temperature.

  • PDF

Experimental Study on Cryogenic Propellant Circulation using Gas-lift (Gas-lift를 이용한 극저온 추진제의 재순환 성능에 대한 실험)

  • Kwon, Oh-Sung;Lee, Joong-Youp;Chung, Yong-Gahp
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.551-554
    • /
    • 2006
  • Inhibition of propellant temperature rising in liquid propulsion rocket using cryogenic fluid as a propellant is very important. Especially propellant temperature rising during stand-by after filling and pre-pressurization can bring into cavitation in turbo-pump. One of the method preventing propellant temperature rising in cryogenic feeding system is recirculating propellant through the loop composed of propellant tank, feed pipe, and recirculation pipe. The circulation of propellant is promoted through gas-lift effect by gas injection to lower position of recirculation pipe. In this experiment liquid oxygen and gas helium is used as propellant and injection gas. Under atmospheric and pressurized tank ullage condition, helium injection flow-rate is varied to observe the variation of recirculating flow-rate and propellant temperature in the feed pipe. There is appropriate helium injection flow-rate for gas-lift recirculation system.

  • PDF

Dynamic Simulation of a Dedicated Outdoor Air-conditioning System (외기 전용 공조기의 동특성 시뮬레이션)

  • Kim, Jung-Min;Kim, Young-Il;Chung, Kwang-Seop;Park, Seung-Tae
    • Proceedings of the SAREK Conference
    • /
    • 2007.11a
    • /
    • pp.322-327
    • /
    • 2007
  • Dedicated outdoor air-conditioning(DOA) system that utilizes pre-cooling and desiccant dehumidification can be superior to conventional cooling and reheating system with respect to energy consumption and indoor thermal comfort. In this work, simulation has been conducted to study various factors that affect the performance of DOA. Dynamic simulation shows the transient variation of temperature and humidity as the on/off control logic is imposed. Exit humidity of process air and flow rate are varied to study the effect on exit temperature of process air, dehumidification quantity, required regeneration temperature and exit humidity of regeneration air. For an outdoor air condition of $28.5^{\circ}C$ temperature, 16 g/kg humidity ratio and 2000 cmh flow rate, the dehumidification efficiency is increased by 4.6% as the flow rate is doubled.

  • PDF

Feasibility of the Lapse Rate Prediction at an Hourly Time Interval (기온감률의 일중 경시변화 예측 가능성)

  • Kim, Soo-ock;Yun, Jin I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.18 no.1
    • /
    • pp.55-63
    • /
    • 2016
  • Temperature lapse rate within the planetary boundary layer shows a diurnal cycle with a substantial variation. The widely-used lapse rate value for the standard atmosphere may result in unaffordable errors if used in interpolating hourly temperature in complex terrain. We propose a simple method for estimating hourly lapse rate and evaluate whether this scheme is better than the conventional method using the standard lapse rate. A standard curve for lapse rate based on the diurnal course of temperature was drawn using upper air temperature for 1000hPa and 925hPa standard pressure levels. It was modulated by the hourly sky condition (amount of clouds). In order to test the reliability of this method, hourly lapse rates for the 500-600m layer over Daegwallyeong site were estimated by this method and compared with the measured values by an ultrasonic temperature profiler. Results showed the mean error $-0.0001^{\circ}C/m$ and the root mean square error $0.0024^{\circ}C/m$ for this vertical profile experiment. An additional experiment was carried out to test if this method is applicable for the mountain slope lapse rate. Hourly lapse rates for the 313-401m slope range in a complex watershed ('Hadong Watermark 2') were estimated by this method and compared with the observations. We found this method useful in describing diurnal cycle and variation of the mountain slope lapse rate over a complex terrain despite larger error compared with the vertical profile experiment.

An experimental study of heat transfer and particle deposition during the outside vapor deposition process (외부증착공정(OVD)에서 열전달 및 입자부착에 관한 실험적 연구)

  • ;;Kim, Jaeyun;Choi, Mansoo
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.3063-3071
    • /
    • 1995
  • An experimental study has been carried out for the heat transfer and particle deposition during the Outside Vapor Deposition process. The surface temperatures of deposited layers, and the rates, efficiencies and porosities of particle deposition were measured. It is shown that the axial variation of the surface temperature can be assumed to be quasi-steady and that as the traversing speed of burner is increased, the deposition rate, efficiency and porosity increase due to the decreased surface temperature. As the flow rate of the chemicals is increased, both the thickness of deposition layers and the surface temperature increase. Deposition rate also increases, however, deposition efficiency decreases for tests done. Later passes in early deposition stage result in higher surface temperatures due to increased thickness of porous deposited layers, which cause the deposition rate, efficiency, and porosity to decrease.

A Study on the Effects of Supply Air Temperature on the Server Cooling Performance in a Data Center (데이터센터의 급기온도 변화가 서버 냉각 성능에 미치는 영향에 대한 연구)

  • Chang, Hyun Jae
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.30 no.2
    • /
    • pp.83-91
    • /
    • 2018
  • A datacenter is a high energy consuming facility whose cooling energy consumption rate is 10~20 times larger than general office buildings. The higher the temperature of supply air from a CRAC (computer room air-conditioner) is supplied, the more energy efficient cooling is possible because of improving the COP of a chiller and advanced range of outdoor air temperature available for the economizer cycles. However, because the temperature of cold air flowing into server computers varies depending on air mixing configurations in a computer room, the proper supply air temperature must be considered based on the investigation of air mixing and heat dissipation. By these, this study aims to understand the effects of variation of the supply air temperature on the air flow distributions, temperature distributions and rack cooling efficiencies. Computational fluid dynamics (CFD) aided in conducting the investigation. As a result, the variation of the supply air temperature does not affect the air flow distributions. However, it mainly affects the temperature distribution. From the results of CFD simulations, Rack cooling indices (RCIHI and RCILO) were evaluated and showed the ideal state set at $19^{\circ}C$ of the supply air temperature.

Study on K-factor for temperature variation of working fluid in spray nozzle with orifice (오리피스형 분사노즐에서 작동유체의 온도변화에 따른 K-factor에 관한 연구)

  • Bae, K.Y.;Chung, H.T.;Kim, C.H.;Kim, H.B.
    • Journal of Power System Engineering
    • /
    • v.12 no.3
    • /
    • pp.12-18
    • /
    • 2008
  • In the present study, the numerical simulation has been performed to investigate K-factor for temperature variation of working fluid in spray nozzle with orifice. The commercial CFD software, Fluent with the proper modeling was applied for analyzing the internal of the spray nozzle. Numerical result for K-factor at $20^{\circ}C$ agrees with the experimental result that it applied n=0.5 within about 7% error. The pressure drop inside nozzle is showed 20% passing swirler, 70% in the region between the outlet of swirler and the orifice and 10% at the outlet of orifice. As the operating pressure is increased, K-factor is decreased by effect of flow resistance at it's inlet before pass swirler. The temperature increase of working fluid reduced the flow rate according to reducing of density, and average 1.23% decrease is showed in the present research.

  • PDF

Thermoregulatory Responses of AM & PM with Body Fat Rate at a Hot Environment (서열환경하에서 체지방률에 따른 오전과 오후의 체온조절반응)

  • Kim, Seong-Suk;Lee, Jung-Sug;Kim, Hee-Eun
    • Fashion & Textile Research Journal
    • /
    • v.7 no.3
    • /
    • pp.315-320
    • /
    • 2005
  • With regard to the fact that temperature of human body remains almost constant at $37^{\circ}C$, changes by circadian variation, this study intended to investigate the effect of circadian rhythm on physiological responses of human body according to body fat rate. Fifteen healthy adult women were recruited for this study and were measured body fat as a method of bio impedance. We organized subjects into three groups ; low body fat group(group L-less than 20% of body fat), medium body fat group(group M-20%~30% of body fat) and high body fat group(group H-more than 30% of body fat). The experiment was carried out in a climate chamber of $32^{\circ}C$, 60% RH with the repeat of 'Exercise' and 'Rest' period. Subjects participated in two experiments, one is morning experiment(called 'AM'), the other is afternoon experiment (called 'PM'). The results of this study are as follows ; As to the variation of rectal temperature, group L and M had a significant difference in the time of the day between AM and PM, but group H had almost the same rectal temperature in the two kinds of experimental time. The reason why group H had a smaller difference in the circadian rhythm of rectal temperature in this study is estimated at the Budd et al.(1991)'s results that body fat had effects on reduction in thermogenesis, radiation, mean skin temperature, and increase in insulation of the tissues. Group M had the highest mean skin temperature in the 'PM'. All the 3 groups didn't have stable values in 'AM'. But it showed more stable in 'PM' than 'AM'. Sweat rate was the highest in group H in both 'AM' and 'PM'. Group M had larger sweat rate in 'PM' than 'AM'. but in group L and H, sweat rate was almost the same in two kinds of time of the day. This result suggests that who have more or less body fat have larger difference in sweat rate between morning and afternoon than who have normal body fat.

Experimental Study of a Solar Drying System (태양열 건조시스템의 실험적 연구 (I))

  • Lee, K.D.;Lee, N.H.;Auh, P.C.M.
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.14-22
    • /
    • 1987
  • This paper presents an experimental study of a solar drying system designed and installed by KIER. Experiments have been performed using the KIER system for the drying of marine products, such as squid. Presented in detail are the experimental observations of collector air temperature, solar intensity, absorber plate temperature, drying chamber temperature, humidity and other measures of drying chamber performance with variation of air mass flow rate. As a result, average temperature attained in the drying chamber during autumn weather has been adequated for drying of squids.

  • PDF

A Study on the Variation Characteristics of Ground Resistance According to Ground Parameters (대지파라미터에 따른 접지저항의 변동 특성에 관한 연구)

  • Han, Ki-Boong;Jeong, Se-Joong;Lee, Dae-Jong;Lee, Sang-Ick
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.434-436
    • /
    • 2000
  • It is difficult to accurately measure the ground resistance because it varies widely not only with the type of soil but also with the ground parameters; the moisture, the temperature the buried depth of electrodes, and the ground augmentation material and so on. Therefore, in this paper we analyzed the relation between the parameters and the resistance of ground in order to obtain a method of maintaining ground resistance stable. In experiments, the variation coefficients of ground resistance were calculated by the monthly measured data. The ground resistance decreases as the length of the ground rod increases. The variation between the ground resistance and the moisture rate of soil was low in case of using the ground augmentation material. Without the ground augmentation material, the ground resistance decreases as the moisture rate of soil increases. The ground resistance becomes small when the earth temperature becomes low.

  • PDF