• Title/Summary/Keyword: Temperature Variation Rate

Search Result 994, Processing Time 0.027 seconds

The Effect of the Metallic Mold Cooling System on the Solidification Structures and the Mechanical Properties for Al-10%Si Alloy Castings (금형주조한 Al-10%Si합금의 응고조직과 기계적 성질에 미치는 금형의 냉각효과에 관한 연구)

  • Lee, Dong-Youn;Cheon, Byung-Wook;Choi, Chang-Ock
    • Journal of Korea Foundry Society
    • /
    • v.13 no.2
    • /
    • pp.155-162
    • /
    • 1993
  • This study has been focused on the influence of the metallic mold cooling effects on the solidification structures and the mechanical properties for Al-10%Si alloy castings by the variation of pouring temperatures, metallic mold temperatures and Cooling part of metallic mold. The dendrite arm spacing of Al-10%Si alloy was decreased with increasing cooling rate. In case of bottom cooling of metallic mold, DAS was appeared to be $20-22{\mu}m$ and in the middle cooling, it was increased to $36-40{\mu}m$. The DAS decreased proportionally $with(cooling\;rate)^{-3/2}$ at pouring temperatures $680^{\circ}C$ and $(cooling\;rate)^{-1/2}$ at pouring temperature $760^{\circ}C$, but it was proportionally increased to $(local\;solidification\;time)^{1/2-1/3}$ at pouring temperature $680^{\circ}C$ and $760^{\circ}C$. The maximum tensile strength of Al-10%Si alloy casting was obtained in case of bottom cooling of mold at pouring temperature $680^{\circ}C$ and metallic mold temperature $320^{\circ}C$.

  • PDF

An Experimental Study on Low-Temperature Behavior of Stratified Fluids in a Square Cavity with Upper Cooling Surface (상부에 냉각면이 있는 정방형내 이종유체의 저온거동에 관한 실험적 연구)

  • Lee, D.S.;Kim, B.C.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.55-62
    • /
    • 2000
  • An experimental study on the stratified fluids with water and silicon oil of same volume in the cavity with upper cooling surface was carried out to investigate the flow characteristics, heat transfer through the interface of fluids, and the applications of thermal behaviors in a square cavity. The experiments were performed with variation of initial temperature and cooling surface temperature. The temperature drop of oil was faster than that of water and freezing was initiated from the interface of oil and water and propagated downward. For the water above $4^{\circ}C$, the cooling rate was faster than that below $4^{\circ}C$ and showed almost same temperature distribution but for the water that of below $4^{\circ}C$, it showed the stable stratified temperature distribution. The lower the initial temperature and the higher the cooling surface temperature was, the longer the supercooling duration.

  • PDF

A Study on the Characteristics of Activated Carbons Supported Metal by Microwave Irradiation (마이크로파 조사에 따른 금속이 담지 된 활성탄의 특성 연구)

  • Kim, Sung-Wook;Kim, Jung-Bae;Choi, Sung-Woo
    • Journal of Environmental Science International
    • /
    • v.18 no.5
    • /
    • pp.501-508
    • /
    • 2009
  • In this study, the characteristics of granular activated carbon (GAC) supported metal was investigated in an area influenced by flame discharge and temperature variation during irradiating microwave. The modified GAC was formulated by impregnating metal hydroxides of nickel (Ni/GAC), barium (Ba/GAC), copper (Cu/GAC), zinc (Zn/GAC), cobalt (Co/GAC) and lanthanum (La/GAC). Ba/GAC was selected as it showed lack of spark discharge and temperature increasing aspects. Comparison of adsorption and desorption amount of GAC and Ba/GAC showed that adsorption and desorption rate of the GAC were higher than those of Ba/GAC. The results show that the presence of barium can decrease adsorption/desorption rate because of plugging pore of GAC. Toluene regeneration rate of Ba/GAC was better than that of GAC due to barium loading. Finally, GAC with barium can be controled a rapid increasing temperature and spark discharge, increased the regeneration rate of toluene during desorption by irradiating microwave.

Change the Properties of Amorphous Carbon Hardmask Film Prepared with the Variation of Process Parameters in Plasma Enhanced Chemical Vapor Depostion Systems

  • Kim, Seok Hwan;Yeo, Sanghak;Yang, Jaeyoung;Park, Keunoh;Hur, Gieung;Lee, Jaeho;Lee, Jaichan
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.381.2-381.2
    • /
    • 2014
  • In this study the amorphous carbon films were deposited by PECVD at the substrate temperature range of 250 to $600^{\circ}C$, and the process conditions of higher and lower precursor flow rate, respectively. The temperature was a main parameter to control the density and mirco-structures of carbon films, and their's properties depended with the process temperatrue are changed by controlling precursor flow rate. The precursor feeding rate affect on the plasma ion density and a deposition reactivity. This change of film properties was obtained the instrinsic stress, FT-IR & Raman analysis, refractive index (RI) and ext. coef. (k) measured by ellipsometer. In the process conditions of lower and higher flow rate of precursor it had a different intrinsic stress as a function of the substrate temperature.

  • PDF

STRAIN RATE CHANGE FROM 0.04 TO 0.004%/S IN AN ENVIRONMENTAL FATIGUE TEST OF CF8M CAST STAINLESS STEEL

  • Jeong, Ill-Seok;Kim, Wan-Jae;Kim, Tae-Ryong;Jeon, Hyun-Ik
    • Nuclear Engineering and Technology
    • /
    • v.43 no.1
    • /
    • pp.83-88
    • /
    • 2011
  • To define the effect of strain rate variation from 0.04% to 0.004%/s on environmental fatigue of CF8M cast stainless steel, which is used as a primary piping material in nuclear power plants, low-cycle fatigue tests were conducted at operating pressure and temperature condition of a pressurized water reactor, 15 MPa and $315^{\circ}C$, respectively. A high-pressure and high-temperature autoclave and cylindrical solid fatigue specimens were used for the strain-controlled low-cycle environmental fatigue tests. It was observed that the fatigue life of CF8M stainless steel is shortened as the strain rate decreases. Due to the effect of test temperature, the fatigue data of NUREG-6909 appears a slightly shorter than that obtained by KEPRI at the same stress amplitude of $1{\times}10^3$ MPa. The environmental fatigue correction factor $F_{en}$'s calculated with inputs of the test data increases with high strain amplitude, while the $F_{en}$'s of NUREG-6909 remain constant regardless of strain amplitude.

MICROSTRUCTURAL CHARACTERISTICS OF HOT FORGED AL 6061 ALLOY

  • Kwon Y.-N.;Lee Y.-S.;Lee J.-H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.10b
    • /
    • pp.55-58
    • /
    • 2003
  • Many researches have been already done on the issues of high temperature deformation and the microstructural evolution. The information has been very useful for the plasticity industry, especially successful for the extrusion. However, the parts made with forging usually have a complex shape. It is difficult to control the distribution of the variables like strain, strain rate and temperature rise due to the working heat during a hot-forging process. Consequently, the microstructural variation could be occurred depending on the plastic deformation history that the forged part would get during a hot forging. In the present study, the microstructural characteristic of a hot-forged 6061 aluminum alloy has been discussed on the aspect of grain size evolution. A forging of 6061 aluminum alloy has been carried out for a complex shape with a dimensional variation. Also, finite element analysis has been done to understand how the deformation variables such as strain, strain rate give an influence on the microstructure of a hot forged aluminum product.

  • PDF

Similarity between a stagnant point diffusion flame and an evolving jet diffusion flame (전개확산제트화염과 정체점 확산화염과의 유사성)

  • Park, Jeong;Shin, Hyun-Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.4
    • /
    • pp.494-502
    • /
    • 1997
  • Experiments on corresponding jet flames with stagnant point diffusion flames have been carried out in initial injection periods. A compensated measurement of maximum flame temperature, which is based on the ion signal, has been employed to inspect flame responses to time-varying strain rates. The flame responses are obtained at two conditions for the slowly time-varying strain rate and the case of flame extinction, and analyzed to confirm similarity between a stagnant point diffusion flame and an evolving jet diffusion flame. Nonsteady effects are addressed via the comparison between several time scales. The time variation with low strain rates, in which illustrates the flame behavior of the upper branch far from extinction in the well-known S-curve, is confirmed to produce a quasi-steady flame response through the nonsteady experiments. The time variation with strain rates in the case of flame extinction indicates an unsteady effect of flame response. It is therefore found that the flame responses near jet tip depend on time histories of characterized strain rates in the developing process.

Effect of Variation of Substrate Temperature and Oxygen Gas Flow of the ZnO Thin Films Deposited on Sapphire (사파이어 기판 위에 증착된 ZnO 박막의 기판온도와 산소 가스량에 따른 특성)

  • Kim, Jae-Hong;Lee, Cheon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.7
    • /
    • pp.652-655
    • /
    • 2005
  • ZnO thin films on (001) $Al_2O_3$ substrates have been deposited by pulsed laser deposition(PLD) technique using an Nd:YAG laser with a wavelength of 266 nm. The influence of the deposition parameters, such as oxygen gas flow, substrate temperature and laser energy density variation on the properties of the grown film, was studied. The experiments were performed for substrate temperatures in the range of $300\~450^{\circ}C$ and oxygen gas flow rate of $100\~900$ sccm. We investigated the structural and optical properties of ZnO thin films using X-ray diffraction(XRD) and photoluminescence(PL).

Performance Analysis on the Variable Speed Scroll Compressor with Operating Conditions (가변속 스크롤 압축기의 운전조건의 변화에 따른 성능 해석)

  • 박홍희;박윤철;김용찬
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.7
    • /
    • pp.649-658
    • /
    • 2000
  • Thermodynamic modeling of low-pressure scroll compressor was developed by combining continuity and energy conservation equation. Suction gas heating was considered using energy balance inside the low pressure shell. Pressure, temperature and mass of refrigerant-22 as a function of orbiting angle were calculated by solving the governing equations using fourth order Rung-Kutta scheme. Motor efficiency was taken by experiments with a variation of frequency. The developed model was applied to the analysis of an inverter driven scroll compressor with a variation of frequency, pressure ratio and operating conditions. The model was verified with the experimental results at the same operating conditions. The developed model was adequate to predict performance of the inverter driven scroll compressor as a function of operating conditions. Calculated parameters from the model were discharge temperature, mass flow rate, power input, COP, and thermodynamic properties with respect to orbiting angle. To enhance the performance of a scroll compressor, it is essential to diminish leakage at low frequency level and improve the mechanical efficiency at high frequency level.

  • PDF

An Experimental Investigation on the Variation of Heating Performance Due to the Refrigerant Flow Control in a Variable-Speed Heat Pump (가변속 열펌프의 냉매 유량제어에 의한 난방성능 변화에 관한 실험적 연구)

  • 김봉훈
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.8
    • /
    • pp.746-756
    • /
    • 2001
  • An experimental study was conducted to investigated the effect of refrigerant flow control on the performance of a variable-speed heat pump operating in both cooling and heating mode. For this purpose, cooling and heating capacity, EER and refrigerant mass flow rate corresponding to an electronic valve as well as a capillary tube were measured as functions of compressor speed, length of capillary tube (or valve opening of the electronic valve), refrigerant charge, and outdoor temperature. From the comparison of experimental results, it was found that the performance variation due to the electronic valve opening became significant as the operating conditions(outdoor temperature and compressor speed) deviated from the standard condition at which heating capacity and EER were rated for the indicated capillary tube.

  • PDF