• 제목/요약/키워드: Temperature Trend

검색결과 1,284건 처리시간 0.028초

Effects of Fan-Aspirated Radiation Shield for Temperature Measurement in Greenhouse Environment

  • Yang, Seung-Hwan;Lee, Chun-Gu;Kim, Joon-Yong;Lee, Won-Kyu;Ashtinai-Araghi, A.;Rhee, Joong-Yong
    • Journal of Biosystems Engineering
    • /
    • 제37권4호
    • /
    • pp.245-251
    • /
    • 2012
  • Purpose: Provision of accurate temperature measurement is an essential element to ensure a precise control in greenhouse environment. This study was organized to compare the effects of six solar radiation shields with different shapes for temperature measurement and find the most appropriate shield for greenhouse environment. Methods: A fan-aspirated radiation shield was designed and manufactured. Using the fan-aspirated radiation shield and five other shapes i.e., the cup shape, horizontal pipe, vertical pipe, parallel boards and commercial shields, temperature measurement was conducted over the lawn surface as well as greenhouse indoor environment. The measurement height varied at 0.5, 1.0 and 1.5 m from the floor. Results: The measured temperatures by the fan-aspirated radiation shield were 1.30-$1.49^{\circ}C$ lower than the values recorded by other different-shaped shields at 1.5 m of measurement height. As the measurement height decreases, observed differences between measured temperatures of the fan-aspirated radiation shield and other shields demonstrate a declining trend. However, at low measurement heights, the radiation emitted from the bottom surface would be the source of error in temperature measurement. Conclusions: The fan-aspirated radiation shield is a required tool for exact measurement of air temperature in greenhouse temperature control.

전정맥 전신마취하(下) 복강경 수술환자의 부위별 심부체온의 변화 평가 (Core Temperature Evaluation in Different Body Parts in Patients Undergoing Laparoscope Surgery under Total Intravenous Anesthesia)

  • 함태수;김원호;김남초;유제복
    • 기본간호학회지
    • /
    • 제22권4호
    • /
    • pp.379-386
    • /
    • 2015
  • Purpose: The trend of body temperature change during laparoscopic surgery and the most adequate site for monitoring temperature measurements have not been investigated thoroughly. In this study body temperature change during laparoscopic surgery was measured and measurements of the tympanic, esophageal, and nasopharyngeal core temperatures in surgical patients with total intravenous anesthesia were compared. Methods: From February to October 2013, 28 laparoscopic surgical patients were recruited from a tertiary hospital in Seoul. The patients' core temperature was measured 12 times at ten minute intervals from ten minutes after the beginning of endotracheal intubation. Results: Repeated measure of core temperatures indicated a significant difference according to body part (p=.033), time of measure (p<.001) and the reciprocal interaction between body part and time of measure (p<.027). The core temperatures were highest at tympany location, lowest at nasopharynx. The amount of temperature change was least for the esophagus ($36.10{\sim}36.33^{\circ}C$), followed by nasopharynx and tympany. Conclusion: The esophageal core temperature showed the highest stability followed by nasopharyngeal and tympanic temperature. Therefore, close observations are required between 10~20minutes after the beginning of the operation.

Variability of measured modal frequencies of a cable-stayed bridge under different wind conditions

  • Ni, Y.Q.;Ko, J.M.;Hua, X.G.;Zhou, H.F.
    • Smart Structures and Systems
    • /
    • 제3권3호
    • /
    • pp.341-356
    • /
    • 2007
  • A good understanding of normal modal variability of civil structures due to varying environmental conditions such as temperature and wind is important for reliable performance of vibration-based damage detection methods. This paper addresses the quantification of wind-induced modal variability of a cable-stayed bridge making use of one-year monitoring data. In order to discriminate the wind-induced modal variability from the temperature-induced modal variability, the one-year monitoring data are divided into two sets: the first set includes the data obtained under weak wind conditions (hourly-average wind speed less than 2 m/s) during all four seasons, and the second set includes the data obtained under both weak and strong (typhoon) wind conditions during the summer only. The measured modal frequencies and temperatures of the bridge obtained from the first set of data are used to formulate temperature-frequency correlation models by means of artificial neural network technique. Before the second set of data is utilized to quantify the wind-induced modal variability, the effect of temperature on the measured modal frequencies is first eliminated by normalizing these modal frequencies to a reference temperature with the use of the temperature-frequency correlation models. Then the wind-induced modal variability is quantitatively evaluated by correlating the normalized modal frequencies for each mode with the wind speed measurement data. It is revealed that in contrast to the dependence of modal frequencies on temperature, there is no explicit correlation between the modal frequencies and wind intensity. For most of the measured modes, the modal frequencies exhibit a slightly increasing trend with the increase of wind speed in statistical sense. The relative variation of the modal frequencies arising from wind effect (with the maximum hourly-average wind speed up to 17.6 m/s) is estimated to range from 1.61% to 7.87% for the measured 8 modes of the bridge, being notably less than the modal variability caused by temperature effect.

Vertical Structures of Temperature and Ozone Changes in the Stratosphere and Mesosphere during Stratospheric Sudden Warmings

  • Kim, Jeong-Han;Jee, Geonhwa;Choi, Hyesun;Kim, Baek-Min;Kim, Seong-Joong
    • Journal of Astronomy and Space Sciences
    • /
    • 제37권1호
    • /
    • pp.69-75
    • /
    • 2020
  • We analyze the observations of temperature and ozone measured by the Microwave Limb Sounder (MLS) during the period of 2005-2016, to investigate the vertical structures of temperature and ozone in the stratosphere and mesosphere during stratospheric sudden warming (SSW). We compute the height profiles of the correlation coefficients between 55 height levels of MLS temperature anomalies and compare them with the results of Whole Atmosphere Community Climate Model simulations for three major SSWs. We also construct the temperature and ozone anomalies for the events to investigate the changes in the temperature and ozone distributions with height. There seems to always be a relatively weak but broad negative correlation between the temperature anomaly at 10 hPa and temperature anomalies over the entire mesosphere during the period before SSW events. However, this pattern gets stronger in the lower mesosphere but becomes a positive correlation in the upper mesosphere and lower thermosphere after the onset of SSW. We also found that the temperatures from the simulations show a similar trend to the observational results but with smaller variations and the transition height from negative to positive correlation in the mesosphere is much lower in the simulation than in the actual observations.

고온기체 유동을 이용한 사출성형품의 웰드라인 개선 (Improvement of Weldlines of an Injection Product in Using Movement of a High Temperature Gas)

  • 정재성;이영주;민경배;송보근;김희성;김선경
    • Design & Manufacturing
    • /
    • 제8권1호
    • /
    • pp.19-22
    • /
    • 2014
  • Today, looking at the trend of product development, interests of injection technology to reduce weldline are growing because of increases of polymer composite materials that containing functional elements and demand of no-painted injection in accordance with environmental regulations. In this paper, surface temperatures of mold increased using high temperature gas for elimination of weldline and characteristics of weldline are analyzed according to mold temperature($60^{\circ}C{\sim}120^{\circ}C$).

  • PDF

대구의 도시건조화 특성에 관한 연구 (A study on the Characteristics of Urban Dryness in Daegu)

  • 박명희;김해동
    • 한국환경과학회지
    • /
    • 제16권2호
    • /
    • pp.171-178
    • /
    • 2007
  • It is well known that urban relative humidity has continuous decreasing trend owing to the influence of urbanization. The change of relative humidity is directly influenced by two factors, namely, temperature effect and water vapor effect in various urban effects. In this study, the temperature and tile water vapor effects on the relative humidity change were analyzed by using monthly mean relative humidities for a long period($1961{\sim}2005$) in Daegu and Chupungnung. The major results obtained in this study can be summarized as follows. Firstly, the urban dryness was caused mainly by water vapor effect in summer. But, for the other seasons, the urban dryness is mainly due to the temperature effect. Secondly, the relative humidity in Daegu is on the decrease until now. This phenomenon is similar to another Korean huge cities such as Seoul, Daejeon and Incheon. But, it is different compared with Japanese huge cities such as Tokyo, Osaka and Nagoya, indicating a standstill in relative humidity change after 1980s.

턴널전류 효과를 이용한 미소가속도계의 마이크로머시닝 공정에서 온도분포 해석 (Analysis of the Temperature Distribution at Micromachining Processes for Microaccelerometer Based on Tunneling Current Effect)

  • 김옥삼
    • 한국생산제조학회지
    • /
    • 제9권5호
    • /
    • pp.105-111
    • /
    • 2000
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than 200~300${\mu}{\textrm}{m}$ has been realized. Over the past four or five years, numerical modeling of microsensors and microstructures has gradually been developed as a field of microelectromechanical system(MEMS) design process. In this paper, we study some of the micromachining processes of single crystal silicon(SCS) for the microaccelerometer, and their subsequent processes which might affect thermal and mechanical loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in structural engineering discipline for component design of microaccelerometer. Temperature rise sufficiently low at the suspended beams. Instead, larger temperature gradient can be seen at the bottom of paddle part. The center of paddle part becomes about 5~2$0^{\circ}C$ higher than the corner of paddle and suspended beam edges.

  • PDF

시차주사열량측정법에 의한 니켈기 초내열 합금의 열분석 (Thermal Analysis of Nickel-Base Superalloys by Differential Scanning Calorimetry)

  • 윤지현;오준협;김홍규;윤존도
    • 한국재료학회지
    • /
    • 제26권5호
    • /
    • pp.235-240
    • /
    • 2016
  • Appropriate thermo-mechanical properties of nickel-based superalloys are achieved by heat treatment, which induces precipitation and solid solution hardening; thus, information on the temperature ranges of precipitation and dissolution of the precipitates is essential for the determination of the heat treatment condition. In this study, thermal analyses of nickel-based superalloys were performed by differential scanning calorimetry method under conditions of various heating rates of 5, 10, 20, or 40K/min in a temperature range of 298~1573K. Precipitation and dissolution temperatures were determined by measuring peak temperatures, constructing trend lines, and extrapolating those lines to the zero heating rate to find the exact temperature under isothermal condition. Determined temperatures for the precipitation reactions were 813, 952, and 1062K. Determined onset, peak, and offset temperatures of the first dissolution reaction were 1302, 1388, and 1406K, respectively, and those values of the second dissolution reaction were 1405, 1414, and 1462K. Determined solvus temperature was 1462K. The study showed that it was possible to use a simple method to obtain accurate phase transition temperatures under isothermal condition.

Preparation and Properties of Pelletized Activated Carbons Using Coconut Char and Coal-Tar Pitch

  • Yang, Seung-Chun;Lee, Young-Seak;Kim, Jun-Ho;Lim, Chul-Kyu;Park, Young-Tae
    • Carbon letters
    • /
    • 제2권3_4호
    • /
    • pp.176-181
    • /
    • 2001
  • A series of activated carbons were prepared from coconut shells and coal-tar pitch binder by physical activation with steam in this study. The effect of variable processes such as activation temperature, activation time and ratio of mixing was investigated for optimizing those preparation parameters. The activation processes were carried out continuously. The nitrogen adsorption isotherms at 77 K on pellet-shaped activated carbons show the same trend of Type I by IUPAC classification. The average pore sizes were about 19-21${\AA}$. The specific surface areas ($S_{BET}$) of pellet typed ACs increased with increasing the activation temperature and time. Specific surface area of AC treated for 90 min at temperature $900^{\circ}C$ was 1082 $m^2/g$. The methylene blue numbers continuously increased with increasing the activation temperature and time. On the other hand, iodine numbers highly increased till activation time of 60 min, but the rate of increase of iodine numbers decreased after that time. This indicates that new micropores were created and the existing micropores turned into mesopores and macropores because of increased reactivity of carbon surface and $H_2O$.

  • PDF

우리나라에서 최근 50년 (1958-2007)간 열대야 발생 특성 및 변화 경향 (Characteristics and Trends of Tropical Night Occurrence in South Korea for Recent 50 Years (1958-2007))

  • 박우선;서명석
    • 대기
    • /
    • 제21권4호
    • /
    • pp.361-371
    • /
    • 2011
  • In this study, characteristics and trends of tropical night (TN) are investigated by using the KMA 14 observation data for the recent 50 years (1958-2007) over South Korea. The TN is defined as a day with a daily minimum temperature exceeds the absolute threshold temperature ($25^{\circ}C$), and the relative deviation from normal temperature, 95th percentile of all observed daily minimum temperature. Although the spatial distribution of TN occurrence depends on the choice of the definitions, the frequency of TN shows strong spatial and interannual variations with the minimum at high land area (Chupungnyeong and wet years) and maximum at southern coastal area and large city area (Jeju, Busan, Seoul, Daegu). Most of TN occurs in August (56%) and July (41%), and the duration date of TN is proportional to the frequency of TN without regard to the definition method. In general, increasing trends are found in the TN time series without regard to the analysis method, but the trends are clearly depending on the analysis period and geographic locations. Decreasing trends are prominent during the most of analysis period, especially until the mid of 1990, whereas strong increasing trends are found during recent 30 years (1988-2007), especially at Jeju, Ulsan, Daegu and Pohang. Also the severity of TN is significantly increased in recent years.