• Title/Summary/Keyword: Temperature Monitoring

Search Result 2,295, Processing Time 0.03 seconds

A case study on monitoring the ambient ammonia concentration in paddy soil using a passive ammonia diffusive sampler (논 토양에서 암모니아 배출 특성 모니터링을 위한 수동식 암모니아 확산형 포집기 이용 사례 연구)

  • Kim, Min-Suk;Park, Minseok;Min, Hyun-Gi;Chae, Eunji;Hyun, Seunghun;Kim, Jeong-Gyu;Koo, Namin
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.1
    • /
    • pp.100-107
    • /
    • 2021
  • Along with an increase in the frequency of high-concentration fine particulate matter in Korea, interest and research on ammonia (NH3) are actively increasing. It is obvious that agriculture has contributed significantly to NH3 emissions. However, studies on the long-term effect of fertilizer use on the ambient NH3 concentration of agricultural land are insufficient. Therefore, in this study, NH3 concentration in the atmosphere of agricultural land was monitored for 11 months using a passive sampler. The average ambient NH3 concentration during the total study period was 2.02 ㎍ m-3 and it was found that the effect of fertilizer application on the ambient NH3 concentration was greatest in the month immediately following fertilizer application (highest ambient NH3 concentration as 11.36㎍ m-3). After that, it was expected that the NH3 volatilization was promoted by increases in summer temperature and the concentration in the atmosphere was expected to increase. However, high NH3 concentrations in the atmosphere were not observed due to strong rainfall that lasted for a long period. After that, the ambient NH3 concentration gradually decreased through autumn and winter. In summary, when studying the contribution of fertilizer to the rate of domestic NH3 emissions, it is necessary to look intensively for at least one month immediately after fertilizer application, and weather information such as precipitation and no-rain days should be considered in the field study.

Analysis of Soil Changes in Vegetable LID Facilities (식생형 LID 시설의 내부 토양 변화 분석)

  • Lee, Seungjae;Yoon, Yeo-jin
    • Journal of Wetlands Research
    • /
    • v.24 no.3
    • /
    • pp.204-212
    • /
    • 2022
  • The LID technique began to be applied in Korea after 2009, and LID facilities are installed and operated for rainwater management in business districts such as the Ministry of Environment, the Ministry of Land, Infrastructure and Transport, and LH Corporation, public institutions, commercial land, housing, parks, and schools. However, looking at domestic cases, the application cases and operation periods are insufficient compared to those outside the country, so appropriate design standards and measures for operation and maintenance are insufficient. In particular, LID facilities constructed using LID techniques need to maintain the environment inside LID facilities because hydrological and environmental effects are expressed by material circulation and energy flow. The LID facility is designed with the treatment capacity planned for the water circulation target, and the proper maintenance, vegetation, and soil conditions are periodically identified, and the efficiency is maintained as much as possible. In other words, the soil created in LID is a very important design element because LID facilities are expected to have effects such as water pollution reduction, flood reduction, water resource acquisition, and temperature reduction while increasing water storage and penetration capacity through water circulation construction. In order to maintain and manage the functions of LID facilities accurately, the current state of the facilities and the cycle of replacement and maintenance should be accurately known through various quantitative data such as soil contamination, snow removal effects, and vegetation criteria. This study was conducted to investigate the current status of LID facilities installed in Korea from 2009 to 2020, and analyze soil changes through the continuity and current status of LID facilities applied over the past 10 years after collecting soil samples from the soil layer. Through analysis of Saturn, organic matter, hardness, water contents, pH, electrical conductivity, and salt, some vegetation-type LID facilities more than 5 to 7 years after construction showed results corresponding to the lower grade of landscape design. Facilities below the lower level can be recognized as a point of time when maintenance is necessary in a state that may cause problems in soil permeability and vegetation growth. Accordingly, it was found that LID facilities should be managed through soil replacement and replacement.

A Study on the Seasonal Water Quality Characteristics and Suitability of Waterfront Activitiesin Waterfront Areas (친수지구의 계절별 수질특성과 친수활동의 적합성에 관한 연구)

  • Taek-Ho Kim;Yoon-Young Chang
    • Journal of Environmental Impact Assessment
    • /
    • v.32 no.2
    • /
    • pp.134-145
    • /
    • 2023
  • Currently, the floodplains of major rivers are transforming into various types of waterfront spaces according to the increase in leisure activities and improved accessibility. In general, waterfront activities in river channels tend to be concentrated in summer, and the waterfront activities during this period directly affect water quality. Accordingly, it is necessary to accurately compare and evaluate the characteristics and water quality of waterfront activities during the period when waterfront activities are concentrated. In this study, the following research was conducted to compare and analyze the current status of waterfront activities of users of waterfront areas and the water quality of waterfront areas. First, three waterfront areas were selected for investigation using the information from the Ministry of Environment's water quality measurement network. Second, a survey was conducted on the satisfaction and types of waterfront activities targeting users of waterfront areas. Third, water quality grades were calculated based on monthly water quality measurement factors and compared. Fourth, statistical analysis (one-way analysis of variance) was conducted to see if there was a significant difference in water quality characteristics between periods of high waterfront activity and periods of low waterfront activity using water quality measurement data for the last 5 years. As a result of this analysis, the following conclusions were drawn in this study. First, the use of waterfront activities was investigated in the order of camping, water skiing, fishing, swimming, and rafting. Second, satisfaction factors for waterfront activities were investigated in the order of activity convenience, water quality, waterlandscape, transportation access convenience, and temperature. Third, it was found that satisfaction with water quality in waterfront areas was generally unsatisfactory regardless of the water quality grade presented by the competent authority. Fourth, as a result of comparing the water quality measurement network data of the Ministry of Environment by water quality grade, generally good grades were found, and in particular, there was a difference in grade frequency by season in the BOD category. Fifth, as a result of statistical analysis (one-way ANOVA) of water quality monitoring network data by season, there were statistically significant differences in COD, BOD, TP, and TOC except for DO. Considering the results of these studies, it is judged that it is necessary to prepare a comprehensive management system for water quality improvement in the waterfront zone and to improve water quality during periods of high waterfront activity, and to prepare a water quality forecasting system for waterfront areas in the future.

Ecological health assessment of Yangjaecheon and Yeouicheon using biotic index and water quality (생물지수와 수질을 이용한 양재천과 여의천의 생태건강성평가)

  • Jin Hyo Lee;Hyeon Han;Jun Yeon Lee;Young Seop Cha;Seog Ju Cho
    • Korean Journal of Environmental Biology
    • /
    • v.40 no.2
    • /
    • pp.172-186
    • /
    • 2022
  • Benthic macroinvertebrates are important ecological and environmental indicators as primary or secondary consumers, and therefore are widely used in the evaluation of aquatic environments. However, there are no comprehensive river ecosystem monitoring surveys that link the major physicochemical water quality items with benthic macroinvertebrates in urban streams. Therefore, this study investigated the distribution characteristics of benthic macroinvertebrates and physicochemical water quality items (17 items) in Yangjaecheon and Yeouicheon from 2019 to 2020. At the same time, by applying Spearman's rank correlation analysis and nonmetric multidimensional scaling (nMDS) analysis in the water quality data and biotic index, we tried to provide basic data for diagnosing the current status of river ecosystems in major urban rivers in Seoul. Based on the study results, a total of 39 species and 3,787 individuals were identified in Yangjaecheon, the water quality(based on BOD, TOC, and TP) of Yangjaecheon was higher than Grade Ib(good), and the BMI using benthic macroinvertebrates appeared as Grade C(normal) at all the sites. In Yeouicheon, a total of 51 species and 4,199 individuals were identified, the water quality(based on BOD, TOC, TP) was higher than Grade Ib(good) similar to Yangjaecheon, and the BMI of both Upstream and Saewon bridge was Grade B(good), while Yeoui bridge was Grade C(normal). Overall, analysis results for the distribution of benthic macroinvertebrates by a nonmetric multidimensional scaling method showed no significant difference between the two streams (p=0.1491). Also, significant environmental variables related to benthic macroinvertebrates distribution were determined as water temperature and DO. On the other hand, the results of the correlation analysis between biotic index and major water quality items confirmed that R1 and BMI could be used for on-site urban river water quality evaluation.

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.

Analysis of Co- and Post-Seismic Displacement of the 2017 Pohang Earthquake in Youngilman Port and Surrounding Areas Using Sentinel-1 Time-Series SAR Interferometry (Sentinel-1 시계열 SAR 간섭기법을 활용한 영일만항과 주변 지역의 2017 포항 지진 동시성 및 지진 후 변위 분석)

  • Siung Lee;Taewook Kim;Hyangsun Han;Jin-Woo Kim;Yeong-Beom Jeon;Jong-Gun Kim;Seung Chul Lee
    • Korean Journal of Remote Sensing
    • /
    • v.40 no.1
    • /
    • pp.19-31
    • /
    • 2024
  • Ports are vital social infrastructures that significantly influence both people's lives and a country's economy. In South Korea, the aging of port infrastructure combined with the increased frequency of various natural disasters underscores the necessity of displacement monitoring for safety management of the port. In this study, the time-series displacements of Yeongilman Port and surrounding areas in Pohang, South Korea, were measured by applying Permanent Scatterer Interferometric Synthetic Aperture Radar (PSInSAR) to Sentinel-1 SAR images collected from the satellite's ascending (February 2017-July 2023) and descending (February 2017-December 2021) nodes, and the displacement associated with the 2017 Pohang earthquake in the port was analyzed. The southern (except the southernmost) and central parts of Yeongilman Port showed large displacements attributed to construction activities for about 10 months at the beginning of the observation period, and the coseismic displacement caused by the Pohang earthquake was up to 1.6 cm of the westward horizontal motion and 0.5 cm of subsidence. However, little coseismic displacement was observed in the southernmost part of the port, where reclamation was completed last, and in the northern part of the oldest port. This represents that the weaker the consolidation of the reclaimed soil in the port, the more vulnerable it is to earthquakes, and that if the soil is very weakly consolidated due to ongoing reclamation, it would not be significantly affected by earthquakes. Summer subsidence and winter uplift of about 1 cm have been repeatedly observed every year in the entire area of Yeongilman Port, which is attributed to volume changes in the reclaimed soil due to temperature changes. The ground of the 1st and 2nd General Industrial Complexes adjacent to Yeongilman Port subsided during the observation period, and the rate of subsidence was faster in the 1st Industrial Complex. The 1st Industrial Complex was observed to have a westward horizontal displacement of 3 mm and a subsidence of 6 mm as the coseismic displacement of the Pohang earthquake, while the 2nd Industrial Complex was analyzed to have been little affected by the earthquake. The results of this study allowed us to identify the time-series displacement characteristics of Yeongilman Port and understand the impact of earthquakes on the stability of a port built by coastal reclamation.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Improvement of Mid-Wave Infrared Image Visibility Using Edge Information of KOMPSAT-3A Panchromatic Image (KOMPSAT-3A 전정색 영상의 윤곽 정보를 이용한 중적외선 영상 시인성 개선)

  • Jinmin Lee;Taeheon Kim;Hanul Kim;Hongtak Lee;Youkyung Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1283-1297
    • /
    • 2023
  • Mid-wave infrared (MWIR) imagery, due to its ability to capture the temperature of land cover and objects, serves as a crucial data source in various fields including environmental monitoring and defense. The KOMPSAT-3A satellite acquires MWIR imagery with high spatial resolution compared to other satellites. However, the limited spatial resolution of MWIR imagery, in comparison to electro-optical (EO) imagery, constrains the optimal utilization of the KOMPSAT-3A data. This study aims to create a highly visible MWIR fusion image by leveraging the edge information from the KOMPSAT-3A panchromatic (PAN) image. Preprocessing is implemented to mitigate the relative geometric errors between the PAN and MWIR images. Subsequently, we employ a pre-trained pixel difference network (PiDiNet), a deep learning-based edge information extraction technique, to extract the boundaries of objects from the preprocessed PAN images. The MWIR fusion imagery is then generated by emphasizing the brightness value corresponding to the edge information of the PAN image. To evaluate the proposed method, the MWIR fusion images were generated in three different sites. As a result, the boundaries of terrain and objects in the MWIR fusion images were emphasized to provide detailed thermal information of the interest area. Especially, the MWIR fusion image provided the thermal information of objects such as airplanes and ships which are hard to detect in the original MWIR images. This study demonstrated that the proposed method could generate a single image that combines visible details from an EO image and thermal information from an MWIR image, which contributes to increasing the usage of MWIR imagery.

GOCI-II Based Low Sea Surface Salinity and Hourly Variation by Typhoon Hinnamnor (GOCI-II 기반 저염분수 산출과 태풍 힌남노에 의한 시간별 염분 변화)

  • So-Hyun Kim;Dae-Won Kim;Young-Heon Jo
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_2
    • /
    • pp.1605-1613
    • /
    • 2023
  • The physical properties of the ocean interior are determined by temperature and salinity. To observe them, we rely on satellite observations for broad regions of oceans. However, the satellite for salinity measurement, Soil Moisture Active Passive (SMAP), has low temporal and spatial resolutions; thus, more is needed to resolve the fast-changing coastal environment. To overcome these limitations, the algorithm to use the Geostationary Ocean Color Imager-II (GOCI-II) of the Geo-Kompsat-2B (GK-2B) was developed as the inputs for a Multi-layer Perceptron Neural Network (MPNN). The result shows that coefficient of determination (R2), root mean square error (RMSE), and relative root mean square error (RRMSE) between GOCI-II based sea surface salinity (SSS) (GOCI-II SSS) and SMAP was 0.94, 0.58 psu, and 1.87%, respectively. Furthermore, the spatial variation of GOCI-II SSS was also very uniform, with over 0.8 of R2 and less than 1 psu of RMSE. In addition, GOCI-II SSS was also compared with SSS of Ieodo Ocean Research Station (I-ORS), suggesting that the result was slightly low, which was further analyzed for the following reasons. We further illustrated the valuable information of high spatial and temporal variation of GOCI-II SSS to analyze SSS variation by the 11th typhoon, Hinnamnor, in 2022. We used the mean and standard deviation (STD) of one day of GOCI-II SSS, revealing the high spatial and temporal changes. Thus, this study will shed light on the research for monitoring the highly changing marine environment.

Efficient Deep Learning Approaches for Active Fire Detection Using Himawari-8 Geostationary Satellite Images (Himawari-8 정지궤도 위성 영상을 활용한 딥러닝 기반 산불 탐지의 효율적 방안 제시)

  • Sihyun Lee;Yoojin Kang;Taejun Sung;Jungho Im
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.979-995
    • /
    • 2023
  • As wildfires are difficult to predict, real-time monitoring is crucial for a timely response. Geostationary satellite images are very useful for active fire detection because they can monitor a vast area with high temporal resolution (e.g., 2 min). Existing satellite-based active fire detection algorithms detect thermal outliers using threshold values based on the statistical analysis of brightness temperature. However, the difficulty in establishing suitable thresholds for such threshold-based methods hinders their ability to detect fires with low intensity and achieve generalized performance. In light of these challenges, machine learning has emerged as a potential-solution. Until now, relatively simple techniques such as random forest, Vanilla convolutional neural network (CNN), and U-net have been applied for active fire detection. Therefore, this study proposed an active fire detection algorithm using state-of-the-art (SOTA) deep learning techniques using data from the Advanced Himawari Imager and evaluated it over East Asia and Australia. The SOTA model was developed by applying EfficientNet and lion optimizer, and the results were compared with the model using the Vanilla CNN structure. EfficientNet outperformed CNN with F1-scores of 0.88 and 0.83 in East Asia and Australia, respectively. The performance was better after using weighted loss, equal sampling, and image augmentation techniques to fix data imbalance issues compared to before the techniques were used, resulting in F1-scores of 0.92 in East Asia and 0.84 in Australia. It is anticipated that timely responses facilitated by the SOTA deep learning-based approach for active fire detection will effectively mitigate the damage caused by wildfires.