• Title/Summary/Keyword: Temperature Monitor

Search Result 683, Processing Time 0.032 seconds

Performance monitoring of timber structures in underground construction using wireless SmartPlank

  • Xu, Xiaomin;Soga, Kenichi;Nawaz, Sarfraz;Moss, Neil;Bowers, Keith;Gajia, Mohammed
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.769-785
    • /
    • 2015
  • Although timber structures have been extensively used in underground temporary supporting system, their actual performance is poorly understood, resulting in potentially conservative and over-engineered design. In this paper, a novel wireless sensor technology, SmartPlank, is introduced to monitor the field performance of timber structures during underground construction. It consists of a wooden beam equipped with a streamlined wireless sensor node, two thin foil strain gauges and two temperature sensors, which enables to measure the strain and temperature at two sides of the beam, and to transmit this information in real-time over an IPv6 (6LowPan) multi-hop wireless mesh network and Internet. Four SmartPlanks were deployed at the London Underground's Tottenham Court Road (TCR) station redevelopment site during the Stair 14 excavation, together with seven relay nodes and a gateway. The monitoring started from August 2013, and will last for one and a half years until the Central Line possession in 2015. This paper reports both the short-term and long-term performances of the monitored timber structures. The grouting effect on the short-term performance of timber structures is highlighted; the grout injection process creates a large downward pressure on the top surface of the SmartPlank. The short and long term earth pressures applied to the monitored structures are estimated from the measured strains, and the estimated values are compared to the design loads.

Effect of heat stress on growth performance and blood profiles in finishing pigs

  • Kim, Byeonghyeon;Kim, Hye Ran;Kim, Ki Hyun;Kim, Minji;Baek, Youl-Chang;Lee, Sung Dae;Jeong, Jin Young
    • Korean Journal of Agricultural Science
    • /
    • v.47 no.3
    • /
    • pp.683-691
    • /
    • 2020
  • A biomarker is needed to monitor and manage the health of pigs from heat stress (HS). Therefore, we investigated the effects of HS on growth performance, nutrient digestibility, and blood profiles in finishing pigs. A total of 12 finishing pigs (n = 12) were raised in thermal neutral (TN; 25℃) conditions for a 3-d adaptation period. After the adaption, 6 pigs were exposed to HS at 33℃ (HS33) for 5 d. The pigs were fed the same diet based on corn and soybean meal. Chromic oxide was added to all the diets at a level of 2 g·kg-1 as an indigestible marker for the determination of the apparent total track digestibility (ATTD) of nutrients and amino acids. Blood samples were collected after the adaptation and heat treatment to verify the blood profiles. The HS33 pigs had a lower (p < 0.01) average daily feed intake (ADFI) and higher (p < 0.05) rectal temperature compared to the TN pigs. However, there was no difference in the ATTD of nutrients and amino acids. The HS33 pigs had reduced (p < 0.05) levels of serum glucose, non-esterified fatty acids (NEFA), total protein, albumin, and calcium compared to the TN pigs. However, the level of total bilirubin was increased (p < 0.05) in the HS pigs. In conclusion, HS reduced the feed intake and had an adverse effect on health. Altered blood profiles as a result of a negative energy balance are expected to be biomarkers of HS in finishing pigs.

Effect of Storage Conditions and Scarification on in vitro Seed Germination in Lorathus tanakae Hosok

  • Ghimeray, Amal Kumar;Lee, Hyun Woo;Lee, Bo-Duk;Sharma, Pankaja;Shim, Ie Sung;Park, Cheol Ho
    • Korean Journal of Plant Resources
    • /
    • v.27 no.3
    • /
    • pp.263-270
    • /
    • 2014
  • Loranthus tanakae (Franch. & Sav.) is an endangered species of mistletoe, distributed in Korean peninsula. The objective of our research is to determine the effect of storage duration and conditions [air flow (AF) and air tight (AT)] at different temperatures for survivability and germination of mistletoe seeds, and also to monitor the effect of seed scarification on germination in vitro. The result revealed that the seeds stored in natural conditions (no stratification) showed highest survival rate of 100% and retained up to 93.3% even after two months of storage in natural conditions and showed higher germination percentage (90%) compare to after ripened seeds. However, the seed stored at $0^{\circ}C$ decreased the germination percentage (ranged from 63 to 73%). Therefore, it can be confirmed that mistletoe does not need after ripened treatment to promote germination. Our research also showed that the storage of L. tanaka seeds in freezing temperatures of $-20^{\circ}C$ and in room temperature for long time either in AT or AF conditions caused the loss of survival and germination rate. On the other hand, the chemical scarification (0.01N HCl incubation for 12 hrs. at $38^{\circ}C$) method was proven more effective to enhance germination percentage of L. tanakae. Regarding the temperature regime, $22^{\circ}C$ showed early germination of mistletoe seeds in vitro.

Rapid full-scale expansion joint monitoring using wireless hybrid sensor

  • Jang, Shinae;Dahal, Sushil;Li, Jingcheng
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.415-426
    • /
    • 2013
  • Condition assessment and monitoring of bridges is critical for safe passenger travel, public transportation, and efficient freight. In monitoring, displacement measurement capability is important to keep track of performance of bridge, in part or as whole. One of the most important parts of a bridge is the expansion joint, which accommodates continuous cyclic thermal expansion of the whole bridge. Though expansion joint is critical for bridge performance, its inspection and monitoring has not been considered significantly because the monitoring requires long-term data using cost intensive equipment. Recently, a wireless smart sensor network (WSSN) has drawn significant attention for transportation infrastructure monitoring because of its merits in low cost, easy installation, and versatile on-board computation capability. In this paper, a rapid wireless displacement monitoring system, wireless hybrid sensor (WHS), has been developed to monitor displacement of expansion joints of bridges. The WHS has been calibrated for both static and dynamic displacement measurement in laboratory environment, and deployed on an in-service highway bridge to demonstrate rapid expansion joint monitoring. The test-bed is a continuous steel girder bridge, the Founders Bridge, in East Hartford, Connecticut. Using the WHS system, the static and dynamic displacement of the expansion joint has been measured. The short-term displacement trend in terms of temperature is calculated. With the WHS system, approximately 6% of the time has been spent for installation, and 94% of time for the measurement showing strong potential of the developed system for rapid displacement monitoring.

Cure Monitoring of Epoxy Resin by Using Fiber Bragg Grating Sensor (광섬유 브래그 격자 센서를 이용한 에폭시 수지의 경화도 모니터링)

  • Lee, Jin-Hyuk;Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.3
    • /
    • pp.211-216
    • /
    • 2016
  • In several industrial fields, epoxy resin is widely used as an adhesive for co-curing and manufacturing various structures. Controlling the manufacturing process is required for ensuring robust bonding performance and the stability of the structures. A fiber optic sensor is suitable for the cure monitoring of epoxy resin owing to the thready shape of the sensor. In this paper, a fiber Bragg grating (FBG) sensor was applied for the cure monitoring of epoxy resin. Based on the experimental results, it was demonstrated that the FBG sensor can monitor the status of epoxy resin curing by measuring the strain caused by volume shrinkage and considering the compensation of temperature. In addition, two types of epoxy resin were used for the cure-monitoring; moreover, when compared to each other, it was found that the two types of epoxy had different cure-processes in terms of the change of strain during the curing. Therefore, the study proved that the FBG sensor is very profitable for the cure-monitoring of epoxy resin.

Design of n Miniaturized LTCC Power Detector for the Tx Power Control in Wireless Communication System (무선통신시스템 송신측 제어를 위한 초소형 LTCC 전력검출부의 설계)

  • Hwang, Mun-Su;Lim, Jong-Sik;Yang, Gyu-Ryeol;Ahn, Dal
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.3
    • /
    • pp.621-627
    • /
    • 2008
  • This paper presents a compact and miniaturized power detector utilizing low temperature co-fired ceramics(LTCC) technology for the application in wireless handset system to monitor the transmitting power at the frequency of 824-849MHz. The proposed power detector is composed of detector diode, lumped components for matching network, and LTCC stripline coupler based on LTCC substrate technology. A 20dB LTCC stripline direction coupler is designed and implemented with many bending section in order to reduce the practically occupied area for miniaturization. A zero bias schottky diode is adopted for detector design because of its high speed operation with minimized loss. The measured performances of fabricated detector agree well with the predicted results with a good linearity within the effective input RF power range.

Preparation of chitosan, sunflower and nano-iron based core shell and its use in dye removal

  • Turgut, Esra;Alayli, Azize;Nadaroglu, Hayrunnisa
    • Advances in environmental research
    • /
    • v.9 no.2
    • /
    • pp.135-150
    • /
    • 2020
  • Many industries, such as textiles, chemical refineries, leather, plastics and paper, use different dyes in various process steps. At the same time, these industrial sectors are responsible for discharging contaminants that are harmful and toxic to humans and microorganisms by introducing synthetic dyes into wastewater. Of these dyes, methylene blue dye, which is classified as basic dyes, is accepted as a model dye. For this reason, methylene blue dye was selected in the study and its removal from the water was studied. In this study, two efficient biosorbents were developed from chitosan and sunflower waste, an agro-industrial waste and modified using iron nanoparticles. The biosorption efficiency was evaluated for methylene blue (MB) dye removal from aqueous solution under various parameters such as treating agent, solution pH, biosorbent dosage, contact time, initial dye concentration and temperature. We investigated the kinetic properties of dye removal from water for Chitosan-Sunflower (CS), Chitosan-Sunflower-Nanoiron (CSN). When the wavelength of MB dye was spectrophotometrically scanned, the maximum absorbance was determined as 660 nm. For the core shell biosorbents we obtained, we found that the optimum time for removal of MB from wastewater was 60 min. The pH of the best pH was determined as 5 in the studied pH. The most suitable temperature for the experiment was determined as 30℃. SEM-EDAX, TEM, XRD, and FTIR techniques were used to characterize biosorbents produced and modified in the experimental stage and to monitor the change of biosorbent after dye removal. The interactions of the paint with the surface used for removal were explained by these techniques. It was calculated that 80% of CS and 88% of CSN removed MB in optimum conditions. Also, the absorption of MB dye onto the surface was investigated by Langmiur and Frendlinch isotherms and it was determined from the results that the removal was more compatible with Langmiur isotherm.

Development of atmospheric environment information collection system using drone (드론을 이용한 대기환경정보 수집장치 개발 및 응용 연구)

  • Kim, Nam Ho
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.44-51
    • /
    • 2018
  • The purpose of this research is to collect atmospheric environmental information at specific altitudes in a range of 0 to 1 km above the surface and to monitor it using drones. The corresponding temperature and humidity were measured with the meteorological factors, and the amounts of fine dust and $CO_2$ were observed by the environmental factors so that they could receive the normal values. Monitoring the status of atmospheric gas emission in specific enterprises, industrial complexes and regions through the measurement is meant to help establish policies to reduce pollution factors. In conventional means previously practiced, exhaust gas detection accompanies a great deal of risks in terms of safety because the surveyor is directly exposed to the source of contamination such as the holes installed in the chimney. However, in our proposed method, the drone can collect information in a wide range under safe circumstances, which can be utilized through wide industrial areas.

Future water quality analysis of the Anseongcheon River basin, Korea under climate change

  • Kim, Deokwhan;Kim, Jungwook;Joo, Hongjun;Han, Daegun;Kim, Hung Soo
    • Membrane and Water Treatment
    • /
    • v.10 no.1
    • /
    • pp.1-11
    • /
    • 2019
  • The Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5) predicted that recent extreme hydrological events would affect water quality and aggravate various forms of water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed and sunlight) were established using the Representative Concentration Pathways (RCP) 8.5 climate change scenario suggested by the AR5 and calculated the future runoff for each target period (Reference:1989-2015; I: 2016-2040; II: 2041-2070; and III: 2071-2099) using the semi-distributed land use-based runoff processes (SLURP) model. Meteorological factors that affect water quality (precipitation, temperature and runoff) were inputted into the multiple linear regression analysis (MLRA) and artificial neural network (ANN) models to analyze water quality data, dissolved oxygen (DO), biological oxygen demand (BOD), chemical oxygen demand (COD), suspended solids (SS), total nitrogen (T-N) and total phosphorus (T-P). Future water quality prediction of the Anseongcheon River basin shows that DO at Gongdo station in the river will drop by 35% in autumn by the end of the $21^{st}$ century and that BOD, COD and SS will increase by 36%, 20% and 42%, respectively. Analysis revealed that the oxygen demand at Dongyeongyo station will decrease by 17% in summer and BOD, COD and SS will increase by 30%, 12% and 17%, respectively. This study suggests that there is a need to continuously monitor the water quality of the Anseongcheon River basin for long-term management. A more reliable prediction of future water quality will be achieved if various social scenarios and climate data are taken into consideration.

Estimation of Ecosystem Metabolism Using High-frequency DO and Water Temperature Sensor Data in Daecheong Lake (고빈도 DO 및 수온 센서 자료를 이용한 대청호 생태계 신진대사 산정)

  • Kim, Sung-Jin;Chung, Se-Woong;Park, Hyungseok;Oh, Jungkuk;Park, Daeyeon
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.6
    • /
    • pp.579-590
    • /
    • 2018
  • The lakes' metabolism bears important information for the assessment of the carbon budget due to the accumulation or loss of carbon in the lake as well as the dynamics of the food webs through primary production. A lake-scale metabolism is evaluated by Gross Primary Production (GPP), Ecosystem Respiration (R), and Net Ecosystem Production (NEP), which is the difference between the first two values. Methods for estimating GPP and R are based on the levels carbon and oxygen. Estimation of carbon is expensive because of the use of radioactive materials which requires a high degree of proficiency. The purpose of this study was to estimate Lake Daecheong ecosystem metabolism using high frequency water temperature data and DO measurement sensor, widely utilized in the field of water quality monitoring, and to evaluate the possibility of using the application method. High frequency data was collected at intervals of 10 minutes from September to December 2017 by installing a thermistor chain and a DO sensor in downstream of Daechung Dam. The data was then used to estimate GPP, R and NEP using the R public program LakeMetabolizer, and other metabolism models (mle, ols, kalman, bookkeep). Calculations of gas exchange coefficient methods (cole, crusius, heiskanen, macIntyre, read, soloviev, vachon) were compared. According to the result, Lake Daecheong has some deviation based on the application method, but it was generally estimated that the NEP value is negative and acts as a source of atmospheric carbon in a heterotrophic system. Although the high frequency sensor data used in this study had negative and positive GPP and R values during the physical mixing process, they can be used to monitor real-time metabolic changes in the ecosystem if these problems are solved.