• Title/Summary/Keyword: Temperature Efficiency

Search Result 5,869, Processing Time 0.029 seconds

The Investigation of CF4 Decomposition in Methane Premixed Flames on Oxygen Enrichment (산소부화된 메탄 예혼합 화염에서 CF4 분해에 대한 연구)

  • Lee, Ki Yong
    • Journal of the Korean Society of Combustion
    • /
    • v.22 no.4
    • /
    • pp.51-56
    • /
    • 2017
  • The decomposition of tetrafluoromethane has been investigated with the reaction mechanism proposed for freely propagating $CH_4/CF_4/O_2/N_2$ premixed flames on the oxygen enrichment. The factors affecting on the removal efficiency of tetrafluoromethane were analyzed. The increase in flame temperature due to oxygen enrichment has a great influence on the removal efficiency of tetrafluoromethane. At the same oxygen enrichment condition, the removal efficiency in the rich flame is higher than one in the lean flame. The increase of the F/H ratio leads to decrease the flame temperature and the removal efficiency of tetrafluoromethan is decreased at the flame temperature of 2600 K or lower, The elementary reactions that dominate the consumption of tetrafluoromethane are (R1) $CF_4+M=CF_3+F+M$ and (R2) $CF_4+H=CF_3+HF$. (R1) has the greatest effect on the consumption of tetrafluoromethane under the oxygen enhanced flames.

An Experimental Study on the Performance of a Concentrating Photovoltaic Cell as a Function of Temperature (온도에 따른 집광형 태양전지의 성능에 관한 실험적 연구)

  • Shin, Jae-Hyuk;Yi, Seung-Shin;Kim, Sang-Min;Boo, Joon-Hong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.96-101
    • /
    • 2012
  • An experimental study was conducted to investigate the performance of a concentrating photovoltaic cell (CPV) against temperature. It is know that a high efficiency of a CPV can be achieved only with proper cell temperature as well as high concentration ratio (CR). This study is concerned with appropriate cooling condition for a liquid-convection cooler for the best performance of a specific CPV. A series of experiments was conducted in a range of cell temperatures as a result of varying cooling conditions, while the concentration ratio was 390 and the solar irradiation flux was higher than 900 $W/m^2$ in outdoor environment. The CPV had a planar dimension of 10 by 10 mm. A Fresnel lens was used as a concentrator, of which the dimension was 221 mm(W) ${\times}$ 221 mm(L) ${\times}$ 3 mm(t) and the transmissivity was known to be 0.8. The cooler was attached to the bottom side of the CPV and had a contact area of 21 mm(W) ${\times}$ 26 mm(L), which was identical to the size of the base plate of the CPV. The coolant temperature was controlled by an isothermal bath and the flow rate was controlled and measured by a flowmeter. The experimental results showed that the average of power efficiency of the CPV decreased from 28.6 % to 24.7 % as the cell temperature increased from $36^{\circ}C$ to $97^{\circ}C$. An appropriate cooling method of a CPV might increase the power conversion efficiency by about 4% for the same concentration ratio. Discussion is included from the viewpoint of the combined efficiency in addition to the power efficiency.

  • PDF

Theoretical Analysis on the Factors Affecting the Power Efficiency of the Kalina Cycle (칼리나 사이클의 발전효율에 영향을 미치는 요소에 관한 이론적 해석)

  • Lee, Ki-Woo;Chun, Won-Pyo;Shin, Hyeon-Seung;Park, Byung-Duck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.9
    • /
    • pp.5425-5433
    • /
    • 2014
  • This study examined the effects of the key parameters on the power efficiency of the waste heat power plant using the EES program to obtain data for the design of the 20kW Kalina power plant. The parameters include the ammonia mass fraction, vapor pressure, heat source temperature, and the cooling water temperature. According to the analyses, a lower ammonia mass fraction and a higher vapor pressure increase the efficiency, in general. On the other hand, this study shows that there is a specific region with a very low ammonia mass fraction, where the efficiency decreases with ammonia mass fraction. Regarding the vapor pressure at the turbine inlet, the power efficiency increases with increasing vapor pressure. In addition, it was found that the influence of the vapor pressure on the efficiency increases with increasing ammonia mass fraction. Finally, the optimal condition for the maximum power efficiency is defined in this study, i.e., the maximum efficiency was 15% with a 25bar vapor pressure, $160^{\circ}C$ heat source temperature, $10^{\circ}C$ cooling water temperature, and 0.4 ammonia mass fraction.

Study on the Performance of the Cascade System Using Alternative Refrigerants (대체냉매를 사용한 이원냉동 시스템의 성능에 관한 연구)

  • 박종훈;조금남
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.7
    • /
    • pp.564-571
    • /
    • 2001
  • The present study investigated the effect of key parameters on the performance of a cascade system using R-22 and R-23 refrigerants. Experimental data for the cascade system have been compared with simulation results using thermodynamic analysis. The cascade system tested at the evaporating temperature of $-80^{\circ}C $ and the condensing temperature of$40^{\circ}C $. The key experimental parameters were the evaporating temperature of the HTC(-35, -30, -25, -20, $-15^{\circ}C $) and mass flux of the HTC(200, 250, 300kg/$m^2$s). As the evaporating temperature and the mass flux of the HTC were increased respectively, the COP and the refrigerating efficiency were increased and then decreased while the volume flow rate per unit refrigeration capacity showed the opposite trend. The maximum COP and refrigerating efficiency were obtained at the evaporating temperature of the HTC of $-25^{\circ}C $ and the mass flux of 250 kg/$m^2$s.

  • PDF

Prediction of High Temperature Plastic Deformation Variables on Al 6061 Alloy (Al 6061 합금의 고온 소성변형 조건의 예측)

  • 김성일;정태성;유연철;오수익
    • Transactions of Materials Processing
    • /
    • v.8 no.6
    • /
    • pp.576-582
    • /
    • 1999
  • The high temperature behavior of Al 6061 alloy was characterized by the hot torsion test in the temperature ranges of 400∼550℃ and the strain rate ranges of 0.05∼5/sec. To decide optimum deformation condition, three types of deformation maps were individually made from the critical strain (εc). deformation resistance(σp) and deformation efficiency (η). The critical strain(εc) for dynamic recrystallization (DRX) which was decided from the inflection point of strain hardening rate(θ) - effective stress (σ) curve was about 0.65 times of peak strain (εp). The relationship among deformation resistance (peak stress, σp), strain rate (ε), and temperature (T) could be expressed by ε=2.9×1013[sinh(0.0256σp]7.3exp (-216,000/RT). The deformation efficiency (η)which was calculated on the basis of the dynamic materials model (DMM) showed high values at the condition of 500∼550℃, 5/sec for 100% strain. The results from three deformation maps were compared with microstructures. The best condition of plastic deformation could be determined as 500℃ and 5/sec.

  • PDF

Desulfurization kinetics of waste paper-sludge and limestone in a fluidized bed reactor (유동층반응기에서 폐제지슬러지와 석회석의 탈황 동역학)

  • 조상원;오광중
    • Journal of Environmental Science International
    • /
    • v.11 no.10
    • /
    • pp.1089-1096
    • /
    • 2002
  • The objectives of this study were to investigate the desulfurization kinetics of paper sludge and limestone in a fluidized bed reactor according to bed temperature and air velocity. The experimental results were presented as follows ; First, the bed temperature had a great influence on the desulfurization efficiency of limestone and paper sludge. In paper sludge, the optimum condition in desulfurization temperature was at 80$0^{\circ}C$ and in limestone, that was at 850 $^{\circ}C$ or 900 $^{\circ}C$ Second, as air velocity increased, the desulfurization efficiency(or the absorbed amount of sulfur dioxide) by limestone and paper sludge decreased. And the absorbed amount of sulfur dioxide by paper sludge was larger than that of by limestone. Third, as the velocity increased and the optimum desulfurization temperature became, ks and the removal efficiency increased. So, ks, kd highly depended on the air velocity and bed temperature.

A Study on the Removal of Hydrogen Sulfide by the Manganese Based Sorbents (망만계 탈황제에 의한 황화수소 제거에 관한 연구)

  • 손병현;최성원;김영식;정종현;조상원;오광중
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.4
    • /
    • pp.1-9
    • /
    • 1996
  • Experiments have been made to test the practical feasibility of using calcined manganese ore to desulfurize hot reducing gas. In this study, the effects of particle size of sorbents, temperature of sulfidation, flow rate and sorbent characteristics on the $H_2S$ removal efficiency of calcined manganese ore were investigated. Experimental results showed that the removal efficiency of $H_2S$ was optimum when the temperature was about 800$\circ$C and that the smaller particle size the higher the $H_2S$ removal efficiency. When the temperature was above 800$\circ$C, the reactivity of sorbent has lowered because agglomeration of sorbent increased intraparticle transport resistance, and this phenomenon was confirmed by SEM photographs. As the temperature increases, capacity for the $H_2S$ removal was increased but the equilibrium concentration of $H_2S$ was not affective.

  • PDF

Study on Thermal Performance of the Electric Boiler according to Screw Rotation Speed in Heating Tank (가열탱크 내부 스크류 회전속도에 따른 전기보일러의 열성능에 관한 연구)

  • Kum, Jong-Soo;Kim, Dong-Gyu;Park, Jong-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.3
    • /
    • pp.13-19
    • /
    • 2015
  • This study was aimed at the heating tank with a screw-rotation device for improving the thermal efficiency of electric boiler. In the proposed system, analysis items were the heater rod surface temperature variation, reaching time for set temperature and thermal efficiency. The following conclusions are obtained from this experimental study. (1) When screw speed increases, the time reaching for set temperature tended to be shorter. (2) When the rotation speed becomes 300 rpm, the surface temperature difference between the right and left heater rod decreases by 49%, from $19.7^{\circ}C$ to $9.7^{\circ}C$ in average. (3) When the rotation speed is over 250 rpm, proposed heating tank structure appeared to be effective in terms of thermal efficiency. Thermal efficiency with the rotation speed 300 rpm is improved by 3.8% compared to the case of rotation speed 0 rpm.

The Efficiency Prediction for Plate Type Steam Reformer with Shape Change of Combustion Chamber (평판형 STR의 연소공간 형상변화에 따른 성능 예측)

  • Kim, Hun-Ju;Lee, Ji-Hong;Lee, Myeong-Yong;Lee, Sang-Seok;Lee, Do-Hyung
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.21 no.4
    • /
    • pp.286-294
    • /
    • 2010
  • According to the propagation of fuel cell system, the importance of that system efficiency is being magnified. Thus, the efficiency improvement of reformer which is the important part of fuel cell system will be required. In structural aspect, the reformer is classified into cylindrical and plate type. Plate type reformer features better maintenance and space efficiency compared with cylindrical type. In this study, we changed the shape of combustion chamber to improve the reforming efficiency. And then we performed the CFD simulation to predict the spacial distribution of temperature. Analysis cased contains with baffles, fins, baffles and fins, and without those. In case of only with-baffle, temperature distributions were uneven because the high temperature stream was concentrated near the baffle end. In case of with-fin, the temperature distributions were relatively even than other cases.

A Study on the Mass Collection Efficiency in Collector Step of Electrostatic Precipitator by Physical Gas Characterization (전기집진장치에서 가스의 물리적인 특성에 따른 포집구역내의 입자포집율 연구)

  • Ha, Sang-An;Im, Gyeong-Taek;Sin, Nam-Cheol
    • Journal of Environmental Science International
    • /
    • v.7 no.1
    • /
    • pp.36-40
    • /
    • 1998
  • This study was carried out to investigate the collection Efficiency of mass in collector step at the different of physical gas characterization. This work has focused on the dependence of the collection efficiency of mass in the collector zone of a two-stage set up field with gas temperature T and the dew point tmeperature. To identify the dependence of the mass collection efficiency on the Bounded plate of the collector zone MP.k by the spectre electric resistance of dust $p_e$. and the relative humidify ${\varphi}$, 20 at- tempts have been made with three different gas temperature ($50{\circ}C, 80{\circ}C, 110{\circ}C$) at different dew point. At the specific electric resistance of dust $p_e$=$10^6{\Omega}m$ which relative humidity corresponds to $\phi$ > 15%, a easy rise of the sounded plate secluded dust mass share was measured atwain. As the result of the higher cohesion imprisonment power due to the adsorbtion of particle, the rinse of the relative humidity developed on the particle surface. Therefore, the collection efficiency of mass was not predominant the high temperature T in the collector zone, neither was the pecific ellectric resistance of dust dependent.

  • PDF