Journal of Advanced Marine Engineering and Technology
/
제17권4호
/
pp.1-10
/
1993
This paper introduces the outline of hull structure to the sorts of LNG carrier briefly. Especially, explains in detail for the insulation system of Moss Rosenberg Verft spherical tank type LNG carrier. It is not easy task to calculate exactly the temperature distribution of hull because of very complicated structure of hull. Therefore, in this paper by the adequate modeling of the Moss Rosengerg spherical tank type LNG carrier, a program is developed which calculate the temperature distribution of every hull and estimate the heat influx from every hull and output the BOR according to the variation of atmospheric conditions on boyage.
Insulation system of LNG carrier has made important roles such as maintaining a proper Boil off Ratio(BOR) for the cargo and avoiding the excessive low temperature of the adjacent inner hull beyond the permissible limit. At the same time, safety and economy of the LNG transportation by the ship are connected with the performance of the insulation system. Also, thermal insulation system of LNG carrier is one of the most advanced technique with the structure analysis of tank, welding and assembling. In this study a computer program is developed to calculate the hull temperature distribution and BOR, which are important factors in thermal design for the Moss Rosenberg Verft spherical tank type LNG carrier. Detailed results for hhull temperature distribution close to LNG tank, BOR and the thickness effect of insulation material are reported in this paper in the range of standare design sea condition.
This paper presents hull stress monitoring system installed in LNGC damaged by a Typhoon Elongation/contraction of removed areas has been assessed in terms of possible residual stress that will take place in replaced blocks when the applied load is removed. The bending moment of a vessel changes actually in terms of loss of longitudinal members and the change of weight distribution in repair procedure. The change of bending moment affects mainly in hull stress of longitudinal members. Hull stress monitoring system was installed on upper deck to prove LNGC stable in the criteria to be less than 40MPa during the period of repair procedure. A temperature measuring system was also installed to exclude the additional stress due to thermal effect from the measured hull stress. As a result, the hull stress was modified with the data measured by the temperature measuring system. This hull stress considering thermal effect was used as a guide stress to check the safety of LNGC during the period of repair procedure.
Recently, a new type of LNG membrane Tank called the "KC-1 membrane LNG Tank" was developed by KOGAS (Korean Gas Corporation). It is necessary to estimate the temperature distribution of the hull structure and insulation system for this new LNG tank, as well as the BOR (Boil-Off Rate) when exposed to outside temperature conditions to ensure the integrity of the tank structure and limit LNG evaporation, from a safety evaluation point of view. In this study, temperature distribution calculations for the hull structure and insulation system of the KC1 membrane tank were compared by employing four numerical approaches under the IGC condition. Approaches 1-3 studied 2D simulations and approach 4 used a 3D numerical simulation. Approach 1 was calculated by in-house Excel VBA codes and the three other approaches utilized ANSYS Fluent. The BOR of approach 4, the 3D simulation case, for the IGC condition was 0.0986%/day.
The uneven distribution of acidic and basic chitinases in different parts of rice seed, and also the characterization of hull-specific chitinases, are reported here. After extraction of chitinases from polished rice, bran, and rice hulls, the chitinases were separated into acidic and basic fractions, according to their behavior on an anion exchanger column. Both fractions from different parts of rice seed showed characteristic activity bands on SDS-PAGE that contained 0.01% glycol chitin. The basic chitinases from rice hulls were further purified using chitin affinity chromatography. The chitinase, specific to rice hulls (RHBC), was 88-fold purified with a 1.3% yield. RHBC has an apparent molecular weight of 22.2 kDa on SDS-PAGE. The optimal pH and temperature were 4.0 and $35^{\circ}C$, respectively. With [$^3H$]chitin as a substrate, RHBC has $V_{max}$ of 13.51 mg/mg protein/hr and $K_m$ of 1.36 mg/ml. This enzyme was an endochitinase devoid of ${\beta}$-1,3-glucanase, lysozyme, and chitosanase activities.
The effect of thermal stress on a ship's hull is not considered to be serious by most naval architects. Frequently, however, cracking of hulls has been reported which occurred at sea while there were no external forces except the heat from the sun. Detailed investigations have been made of these reports and it has been reliably determined that the damage was initiated by solar heating. The author is not interested in all steel ship or in the applicability and validity of the formular itself, as it has already been proven by the experiments such as S.S. Boulder Victory. The author therefore proceeds directly to calculate the stress distribution on he hull and superstructure of the prototype model ship. These calculations are based on the experimental nonsymetrical temperature gradient data taken earlier on the Boulder Victory. The calculations were made principally to determine the extent of stresses which occurred on an all-steel ship in one case and secondly, those that occurred on a ship with a steel hull and an aluminum superstructure. From the calculations, the author expected the stress distribution of the two case would show distinctly different aspects, but the acquired results were very similar. Generally, at the point of junction of the steel hull and aluminum superstructure sharp peak stresses appeared. At the juncture of the superstructure and the main deck the ship with the aluminum superstructure registered almost 1000 psi more stress than did the ship with the all-steel construction. In the view of these findings, the author recommends to ship designers that pay particular attention to the point of junction of steel and aluminum plate. The author has proven that it is extremely important that a greater safety factor be used at the aluminum-steel junction point than at any other point. Although thermal effects cause high juncture-point stresses in all-steel ships, they are not nearly as critical as in ship constructed of two or more metals.
This study is concerned with the thermal analysis during the cool-down period of 135,000㎥ class GT-96 membrane type LNG carrier under IMO and USCG design condition. During the cool-down period, the spraying rate for the NG cooling decreases as the temperature of NG falls down from -4$0^{\circ}C$ to -l3$0^{\circ}C$, and the spraying rate for the cooling of the insulation wall increases as the temperature gradient of the insulation wall is large. It was confirmed that there existed the largest temperature decrease at the first barrier and the first insulation, which are among the insulation wall, especially in the top side of the insulation wall under IMO and USCG design condition. Also, as the NG temperature distribution is fixed, the outer temperature condition under the design condition has influence on the temperature variation at the insulation. By the 3-D numerical calculation about the cargo tank and the cofferdam during the cool-down period, the temperature variation in hulls and insulations is precisely predicted under IMO and USCG design condition. From the comparison between two conditions; IMO design condition shows more severe temperature gradient than USCG design condition, therefore, it provides the conservative estimation of the BOG.
The cargo containment system (CCS) for ships carrying cryogenic fluid consists of at least two levels of barriers and insulation layers. It is because, even though there is a small amount of leak through the primary barrier, the liquid tight secondary barrier blocks further leakage of the cryogenic fluid. However, once the secondary barrier is damaged, it is highly possible that the leaked cryogenic fluid flows through the flat joint made of glass wool and reaches the inner hull of the ship. The primary objective of the present study is to investigate the influence of the damage extent in the secondary barrier on the amount of leaked cryogenic fluid reaching the inner hull and the temperature distribution there. Simulation results using a computational fluid dynamics tool were compared with the experimental data for the leaked cryogenic fluid flow and evaporation in the secondary insulation layer. The experimental and computational results suggest that, unless there is a massive leak, the cryogenic fluid mostly evaporates in the insulation layer and does not reach the inner hull in the state of liquid.
멤브레인형 가스운반선의 경우 화물창들 사이에 cofferdam을 두어 격리시키고 있는데 이 경우 극 저온 액체 화물의 영향으로 cofferdam 실내 온도는 약 $-40^{\circ}C$내외로 떨어지게 된다. 그 결과 cofferdam 및 화물창을 구성하는 bulkhead는 구조 부재로서의 허용 강도를 만족하는 온도를 유지할 수 없게 된다. 결국 heating system을 사용하여 cofferdam 실내 온도를 최소한 $5^{\circ}C$까지 올려야 하는데, 소요 pipe의 길이 산정을 위한 heat flux 산출과 pipe의 배치가 우선적으로 요청된다. 본 연구에서는 다양한 설계 조건에서의 cofferdam 내 heat flux를 각 compartment들 간의 연성 효과를 고려하여 구하고 이를 기존 계산서들과 비교 검토하여 그 타당성을 검증하였고 이를 토대로 heating system에 필요한 pipe의 길이를 산정하였다. 아울러 현재의 heating system의 대안으로 fin을 부착한 pipe로 구성된 heating coil system을 제시하고 그 효율을 비교하였다.
본 논문에서는 Membrane형 LNG선의 구성 요소를 대상으로 단열창의 열적 분포를 알아보기 위해 극저온 상태에서부터 온도 별로 각 소재의 열적 물성치인 열전도도(thermal conductivity)를 실험을 통해서 알아보았다. 극저온 상태인 $-163^{\circ}C$의 온도상태로 유지되어야 하는 LNG선 화물탱크는 단열재료로 하여금 열을 차단하기 위해 많은 연구가 되어야 하는데 특히 여러 재료로 구성되어 있는 단열 화물창(CCS: Cargo containment system)은 열적 물성치가 온도에 따라 각각 어떠한 값을 가지는 것이 주요 관심대상이고, 이를 통해 전체 LNG 단열 화물창이 어떤 열적 분포를 가지는 것에 대한 연구가 필요하다. 실험을 통해 얻은 물성치를 가지고 전체 화물창의 온도분포를 정적 열해석을 통해 알아보았다. 또한 외부의 충격에 의해 LNG가 누수되었을때 2차 방벽 특히 hull 부분에서는 누수량에 대해서 어떠한 온도분포와 열적 안전성에 대해서 알아보았다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.