• Title/Summary/Keyword: Temperature Difference Energy

Search Result 1,097, Processing Time 0.03 seconds

Nafion 115를 사용한 DMFC MEA 의 성능실험 (Performance of a direct methanol fuel cell (DMFCs)Using Nation 115)

  • 최훈;황용신;차석원
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 추계학술대회 논문집
    • /
    • pp.43-46
    • /
    • 2007
  • To find out the optimum design of hydrogen storage and supply tank using Metal Hydride (briefly MH) and to make clear the performance characteristics under various conditions are our research purpose. In order to use the low-temperature exhaust heat, $LaNi_{4.7}Al_{0.3}$ which operates under the low pressure of 1MPa is chosen, and we measure the basic properties, namely density, specific heat, PCT(Pressure-Concentration-Temperature) characteristic, and effective thermal conductivity. Then, a numerical calculation model of hydrogen storage using MH alloy is suggested and this thermal diffusion equation of model is solved by the backward difference method. This calculation results rate compared with the experimental results of the systems which installed 1kg MH alloy and, it is found out that our calculation model can well predict the experimental results. By the experimental using MH alloy, it is recognized that the hydrogen flow rate can control by the step adjustment of brine temperature.

  • PDF

수평평판에서 복합 층류 막응축에 대한 연구 (A Study of Conjugate Laminar Film Condensation on a Flat Plate)

  • 이억수
    • 설비공학논문집
    • /
    • 제17권4호
    • /
    • pp.303-311
    • /
    • 2005
  • The problem of conjugate laminar film condensation of the pure saturated vapor in forced flow over a flat plate has been investigated as boundary layer solutions. A simple and efficient numerical method is proposed for its solution. The interfacial temperature is obtained as a root of 3rd order polynomial for laminar film condensation, and it is presented as a function of the conjugate parameter. The momentum and energy balance equations are reduced to a nonlinear system of ordinary differential equations with four parameters: the Prandtl number, Pr, Jacob number, $Ja^{\ast}$, defined by an overall temperature difference, a property ratio R and the conjugate parameter ${\zeta}$. The approximate solutions thus obtained reveal the effects of the conjugate parameter.

증착온도가 LPCVD 실리콘 박막의 물성과 전기적 특성에 미치는 영향 (Influence of the Deposition Temperature on the Structural and Electrical Properties of LPCVD Silicon Films)

  • 홍찬희;박창엽
    • 대한전기학회논문지
    • /
    • 제41권7호
    • /
    • pp.760-765
    • /
    • 1992
  • The material properties and the TFT characteristics fabricated on SiOS12T substrate by LPCVD using SiHS14T gas were investigated. The deposition rate showed Arrhenius behavior with an activation energy of 31Kcal/mol. And the transition temperature form amorphous to crystalline deposition was observed at 570$^{\circ}C$-580$^{\circ}C$. The strong(220) texture was observed as the deposition temperature increases. XRD analysis showed that the film texture of the as-deposited polycrystalline silicon does not change after annealing at 850$^{\circ}C$. The fabricated TFT's based on the as-deposited amorphous film showed superior electrical characteristics to those of the as-deposited polycrystalline films. It is considered that the different electrical characteristics result from the difference of flat band voltage(VS1FBT) due to the interface trap density between the gate oxide and the active channel.

항공기내 연료 및 오일온도 변화에 대한 수치해석적 연구 (A Numerical Analysis on Transient Temperatures of Fuel and Oil in a Military Aircraft)

  • 김영준;김창녕;김철인
    • 대한기계학회논문집B
    • /
    • 제26권8호
    • /
    • pp.1153-1163
    • /
    • 2002
  • A transient analysis on temperatures of fuel and oil in hydraulic and lubrication systems in an aircraft was studied using the finite difference method. Numerical calculation was performed by an explicit method with modified Dufort-Frankel scheme. Among various missions, air superiority mission was considered as a mission model with 20% hot day ambient condition in subsonic region. The ambience of the aircraft was assumed as turbulent flow. Convective heat transfer coefficient were used in calculating heat transfer between the aircraft surface and the ambience. For an aircraft on the ground, an empirical equation represented as a function of free-stream air velocity was used. And the heat transfer coefficient for flat plate turbulent flow suggested by Eckert was employed for in-flight phases. The governing equations used in this analysis are the mass and energy conservation equations on fuel and oils. Here, analysis of fuel and oil temperature in the engine was not carried out. As a result of this analysis, the ground operation phase has shown the highest temperature and the largest rate of temperature increase among overall mission phases. Also, it is shown that fuel flow rate through fuel/oil heat exchanger plays an important role in temperature change of fuel and oil. This analysis could be an important part of studies to ensure thermal stability of the aircraft and can be applicable to thermal design of the aircraft fuel system.

한지창호의 실내 온.습도 조절효과에 관한 실험적 연구 (An Experimental Study on the Effect of Hanji Windows on Indoor Air Temperature and Humidity Control)

  • 장길수;박사근;송민정;신훈
    • 한국주거학회논문집
    • /
    • 제17권2호
    • /
    • pp.125-134
    • /
    • 2006
  • The tightness of windows have devoted to the improvement of thermal insulation and energy saving in buildings. But it is known that this tightness causes some side effects such as low ventilation, low capacity to humidity and temperature control and these are not profitable for inhabitants. To act on these side effects, Korean traditional windows which are composed of Han-Ji(Koreand traditional paper) and Chang-Sal(Korean traditional wooden frame) have been studied to get a reasonable solutions for these problems. In this study, to compare the thermal and humidity control performance of current window(12 mm pair) and Korean traditional windows, frames which are made of existing window and Korean traditional windows are adapted to scale model house and then humidity and temperature of in and out of scale model house are measured and analysed. The results of this study are followings ; 1) When Korean traditional window charges 20cm(1/8 of total window area) from total window area, Han-Ji window has higher thermal insulation than that of existing window in daytime. There is the most big thermal difference when double faced with double-ply Han-Ji window is placed to mock-up house. In night-time, the temperature difference is very small so this means that Korean traditional window is good to cover direct sunlight in daytime and reduce the temperature of balcony. One faced with one-ply han-Ji window has the best humidity penetration performance among three type of Korean traditional windows. 2) When Korean window area enlarged to 40cm(1/4 of total window area), the function of 40cm width Han-Ji window is higher than that of 20cm's. This means that enlargement of Han-Ji window cover direct sunlight more and is more efficient in humidity penetration.

The characteristics of gasification for combustible waste

  • Na, Jae-Ik;Park, So-Jin;Kim, Yong-Koo;Lee, Jae-Goo;Kim, Jae-Ho
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.227-234
    • /
    • 2002
  • With the increasing environmental consideration and stricter regulations, gasification of waste is considered to be more attractive technology than conventional incineration for energy recovery as well as material recycling. The experiment for combustible waste mixed with plastic and cellulosic materials was performed in the fixed bed gasifier to investigate the gasification behavior with the operating conditions. Waste pelletized with a diameter of 2~3cm and 5cm of length was gasified at the temperature range of 1100~145$0^{\circ}C$. It was shown that the composition of H$_2$ was in the range of 30~40% and CO 15~30% depending upon oxygen/waste ratio. Casification of waste due to thermoplastic property from mixed plastic melting and thermal cracking shows a prominent difference from that of coal or coke. It was desirable to maintain the top temperature up to foot to ensure the mass transfer and uniform reaction through the packed bed. As the bed height was increased, the formation of H$_2$ and CO was increased whilst $CO_2$ decreased by the char-$CO_2$ reaction and plastic cracking. From the experimental results, the cold gas efficiency was around 61% and heating values of product gases were in the range of 2800~3200㎉/Nm3.

  • PDF

태양전지 모듈의 구성 요소가 PID 발생에 미치는 영향 (The Effect of PID Generation by Components of the PV Module)

  • 김한별;정태희;강기환;장효식
    • 한국전기전자재료학회논문지
    • /
    • 제26권10호
    • /
    • pp.760-765
    • /
    • 2013
  • PID (potential induced degradation) of PV module is the degradation of module due to the high potential difference between the front surface of solar cells and ground when PV modules operate under high humidity and temperature conditions. PID is generally derived from the positive sodium ions in front glass that are accumulated on P-type solar cells. Therefore, some papers for the electrical characteristic of only front components as glass, EVA sheet, solar cell under PID generation condition were revealed. In this paper, we analyzed the different outputs of module with PID by considering the all parts of module including the back side elements such as glass, back sheet. Mini modules with one solar cell were fabricated with the various parts on front and back sided of module. To generate PID of module in a short time, the all modules were applied.1,000 V in $85^{\circ}C$, 85% RH. The outputs, dark IV curves and EL images of all modules before and after experiments were also measured to confirm the main components of module for PID generation. From the measured results, the outputs of all modules with front glass were remarkably reduced and the performances of modules with back and front glass were greatly deteriorated. We suggest that the obtained data could be used to reduce the PID phenomenon of diverse modules such as conventional module and BIPV (building integrated photovoltaic) module.

도자기 1차 소성로의 3차원 유동장 수치해석에 관한 연구 (A Numerical Study of the 3-D Flow in the Primary Calcinator of Porcelain)

  • 김성수;홍성선;박지영;오창섭
    • 에너지공학
    • /
    • 제5권1호
    • /
    • pp.50-55
    • /
    • 1996
  • 상용 code인 Fluent를 이용하여 도자기의 1차 소성로에 대해 온도장과 속도장을 계산하고 열효율을 산출하였다. 수치해석의 변수로는 배출구 및 도자기의 위치를 변화시켰으며, 수치해석 방법은 검사체적에 기초한 유한차분방법 및 Upwind scheme과 SIMPLEC Algorithm을 사용하였고 난류모델로는 표준 k-$\varepsilon$ 모델을 사용하였다. 계산결과 출구 위치가 전체 소성로내 벡터유동의 양상을 크게 좌우하는 것으로 나타났으며, 전체 온도장에 대해서는 복사의 영향으로 큰 차이를 보이지 않았으나 예열대 상부에 출구가 있는 경우와 비교할 때 예열대 또는 냉각대의 측면에 출구가 있는 경우에 그 영역의 온도가 다소 높게 나타났다. 소성품의 위치는 로내 유동장 및 온도 분포에 크게 영향을 끼치지는 않으나 소성품 내 온도는 그 위치하는 영역의 온도 분포에 크게 영향을 받는 것으로 나타났다. 예열대 상부에 출구가 있는 경우 열효율은 17%로 매우 저조하였고 출구에서의 가스온도는 약 1000 K로 매우 높았다.

  • PDF

미소시험편을 이용한 고온 크리프 특성 평가법 개발 (Development of High Temperature Creep Properties Evaluation Method using Miniature Specimen)

  • 유효선;백승세;이송인;하정수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.43-48
    • /
    • 2000
  • In this study, a small punch creep(SP-Creep) test using miniaturized specimen$(10{\times}10{\times}0.5mm)$ has been described for the development of the newly semi-destructive creep test method for high temperature structural components such as headers and tubes of boiler turbine casino and rotor and reactor vessel. The SP-Creep testing technique has been applied to 2.25Cr-1Mo(STBA24) steel used widely as boiler tube material and the creep test temperature are varied at $550^{\circ}C{\sim}600^{\circ}C$. The overall deformations of SP-Creep curves are definitely depended with applied load and creep test temperature and show the creep behaviors of three steps like conventional uniaxial creep curves. The steady state creep rate${\delta}_{ss}$ of SP-Creep curve for miniaturized specimen increases with increasing creep temperature, but the exponential value with creep loading is decreased. The activation energy$(Q_{spc})$ during SP-Creep deformation with various test temperatures shows 605.7kJ/mol that is g.eater than 467.4kJ/mol reported in uniaxial creep test. This may be caused by the difference of stress states during creep deformation In two creep test. But from the experimental results, e.g. SP-Creep curve behaviors, the steady state creep rate${\delta}_{ss}$ with creep temperature, and the exponential value(n) with creep loading, it can be summarized that the SP-Creep test may be a useful test method to evaluate the creep properties of the heat resisting material.

  • PDF

AIFeO3 물질의 Mössbauer 분광학적 연구 (Mössbauer Study of AIFeO3)

  • 위지훈;김삼진;김철성
    • 한국자기학회지
    • /
    • 제16권1호
    • /
    • pp.14-17
    • /
    • 2006
  • 졸겔법을 이용하여 $AIFeO_3$ 단일상을 제조하였으며, 그 결정학적 및 자기적 특성을 X선 회절법(XRD), 진동 시료 자화율 측정법(VSM), 뫼스바우어 분광법으로 연구하였다. 결정구조는 공간군이 $Pna2_1$ orthorhombic 구조로 분석되었으며, 격자 상수는 각각 $a_0=4.983\;{\AA},\;b_0=8.554\;{\AA},\;c_0=9.239\;{\AA}$임을 알 수 있었다. VSM을 이용하여 65K에서부터 상온까지 여러 온도 구간에서 자기이력곡선을 측정하였으며, 강자성 특성과 함께 저온영역에서 자기 이력 곡선의 비대칭성이 관측되었다. 온도에 따른 자기모멘트 측정 결과로부터 자기전이온도는 250k로 결정하였다. 뫼스바우어 스펙트럼은 4.2K에서부터 상온까지의 온도 영역에서 측정하였으며, 분석 결과 상온에서 이성질체 이동치는 0.32mm/s로 철의 이온상태가 ferric임을 확인할 수 있었다. 온도변화에 따라 측정된 뫼스바우어 스펙트럼 분석은 온도에 따라 선폭이 증가함이 관측되었는데, 이러한 흡수선의 비대칭적 선폭 증가는 1개의 사면체자리와 3개의 팔면체 자리의 Fe이온 분포와 각 부격자간 자기이방성 에너지 차이에 따른 결과로 해석된다.