• Title/Summary/Keyword: Temperature Cracking

Search Result 612, Processing Time 0.034 seconds

Tc-To Method in Measurement of Concrete Crack (Tc-To법에 의한 콘크리트 균열측정)

  • 민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.39 no.3
    • /
    • pp.108-114
    • /
    • 1997
  • Concrete is said to have a high degree of extensibility when it is subjected to large deformations without cracking. The cracking behavior of concrete in the field may even be more complex. For example, in mass concrete compressive stresses are developed during the very early period when temperatures are rising, and the tensile stresses do not develop until at a later age when the temperature begins to decline. Actual cracking and failure depend on the combination of factors and indeed it is rarely that a single adverse factor is responsible for cracking of concrete. The importance of cracking and the minimum width at which a crack is considered significant depend on the conditions of exposure of the concrete. The ultrasonic pulse measurements can be used to detect the development of cracks in structures such as dams, and to check deterioration due to frost or chemical action. An estimate of the depth of a crack visible at the surface can be obtained by measuring the transit times across the crack for two different arrangements of the transducers placed on the surface. In this paper, the concrete cracks that artificially introduced crack width is 1 and 2mm, crack depth is 2, 4, 6, 8cm were measured by Tc-To Method In consequence, the measured depth was increased with increase of measuring distance from concrete crack. The most reliable results were shown when the introduced crack width was 1mm, and the measuring distance was 10cm from concrete crack.

  • PDF

Effects of Serrated Grain Boundary Structures on Boron Enrichment and Liquation Cracking Behavior in the Simulated Weld Heat-Affected Zone of a Ni-Based Superalloy (니켈기 초내열합금의 파형 결정립계 구조가 보론 편석과 재현 열영향부 액화균열거동에 미치는 영향)

  • Hong, Hyun-Uk;Choi, June-Woo;Bae, Sang-Hyun;Yoon, Joong-Geun;Kim, In-Soo;Choi, Baig-Gyu;Kim, Dong-Jin;Jo, Chang-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.3
    • /
    • pp.31-38
    • /
    • 2013
  • The transition of serrated grain boundary and its effect on liquation behavior in the simulated weld heat-affected zone (HAZ) have been investigated in a wrought Ni-based superalloy Alloy 263. Recently, the present authors have found that grain boundary serration occurs in the absence of adjacent coarse ${\gamma}^{\prime}$ particles or $M_{23}C_6$ carbides when a specimen is direct-aged with a combination of slow cooling from solution treatment temperature to aging temperature. The present study was initiated to determine the interdependence of the serration and HAZ property with a consideration of this serration as a potential for the use of a hot-cracking resistant microstructure. A crystallographic study indicated that the serration led to a change in grain boundary character as special boundary with a lower interfacial energy as those terminated by low-index {111} boundary planes. It was found that the serrated grain boundaries are highly resistant to boron enrichment, and suppress effectively grain coarsening in HAZ. Furthermore, the serrated grain boundaries showed a higher resistance to susceptibility of liquation cracking. These results was discussed in terms of a significant decrease in interfacial energy of grain boundary by the serration.

Development of Temperature-Aanalysis Program for Mass Concrete Using Finite Element Method (유한요소법에 의한 매스콘크리트 구조물의 온도해석 프로그램 개발)

  • 김은겸;김래현;신치범
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.6
    • /
    • pp.167-175
    • /
    • 1995
  • A temperature-analysis program, named ${\ulcorner}TAMCON{\lrcorner}$, was developed to predict the temperature rise due to the heat of hydration in hardening concrete. Finite element method was employed to facilitate the temperature analysis for the structures with complex geometry and various boundary conditions. In order to test the validity of the program, the results obtained from TAMCON for the wall-t.ype structure and the mat foundation were compared with the numerical analysis anti experimental data reported previously. As a result, it was found that they were in good agreement. TAMCON may be useful for the temperature control to restrain thermal cracking and the construction management to design the reasonable curing method in mass concrete.

Temperature Effect on Tensile Strength of Filled Natural Rubber Vulcanizates (가황 천연고무의 인장강도에 미치는 온도의 영향)

  • Ko, Young-Chon;Park, Byung-Ho
    • Elastomers and Composites
    • /
    • v.36 no.4
    • /
    • pp.255-261
    • /
    • 2001
  • This study was related with the effect of elevated temperature on the tensile strength of edge-cut samples. There was a different tensile strength behavior of uncut samples and pre-cut samples under different test temperatures. Tensile strength of uncut sample decreases with increasing test temperature. When pro-cut size(C) is larger than critical cut size($C_{cr}$), tensile strength or pre-cut specimen at $80^{\circ}C$ is higher than that of pre-cut specimen at room temperature (RT). Test specimens under $80^{\circ}C$ condition exhibited more secondary cracks at the crack tip region compared to room temperature conditions. However, secondary cracks of pre-cut specimens are not clearly developed at $110^{\circ}C$. Differences in tensile strength induced by different test temperature seem to be responsible for the strain-induced crystallization and micro-cracking patterns.

  • PDF

A Study on the Coating Cracking on a Substrate in Bending II : Experiment (굽힘모드하에서의 코팅크랙킹의 분석II: 실험)

  • Sung-Ryong Kim;John A. Nairn
    • Composites Research
    • /
    • v.13 no.3
    • /
    • pp.48-57
    • /
    • 2000
  • Fracture analysis of coating cracking on a substrate system described in a companion paper was applied and verified by four-point bending tests. The multiple cracking of coating was predicted using a fracture mechanics approach. The strain energy release rate (G) due to the formation of a new crack in a coating was obtained. A crack density vs. strain data of metallic and polymeric substrate was used to get the in-situ fracture toughness of coating with respect to various baking time and temperature. The $G_c$ was decreased as the baking temperature and time was increased. This paper gave insight about usefulness of four-point bending test for fracture toughness evaluation of coating and it gave a new method for in-situ coating toughness.

  • PDF

Experimental Studies on Comparison of Stress Corrosion Cracking Generation Due to Pipe Material Degradation in the Primary Stage of the Nuclear Power Plant (원전 1차 측 배관재질의 열화에 따른 응력부식균열 발생 비교 실험 연구)

  • Park, Kwang-Jin;Lee, Gyu-Young;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.108-113
    • /
    • 2007
  • In this report, stress corrosion cracking generation due to pipe material degradation in the primary stage of the nuclear power plant was investigated. Firstly, after artificially degrading the CF8A steel during 2, 4, and 6 months in actual temperature, $400^{\circ}C,$ assessed corrosion susceptibility of the degraded material following ASTM G5 standard. And next, the S.C.C. tests for the degraded material were conducted under the condition of $60^{\circ}C,$ 2wt.% H2BO3+Li70H solution, 0.8 oy. From the results, Corrosion rates linearly increased with degradation period and solution temperature increase. And both the raw material and the degraded materials were not failed in the S.C.C. test condition. In spite of long time test (about 3,900 hrs) under S.C.C. condition, surface pits or surface corrosion by the electro chemical reaction were not observed. And also, even though the nondestructive DCPD and ACPD methods were applied to on-line monitor the S.C.C. failure processes it was impossible because the surface pits and cracks were not generated.

  • PDF

A Study on Stress Corrosion Cracking of Fiber Reinforced Composite by Slow Strain Rate Test (저변형률시험법에 의한 섬유강화 복합재료의 응력부식균열에 관한 연구)

  • Lim, Jae-Gyu;Choi, Tae-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.11
    • /
    • pp.3433-3440
    • /
    • 1996
  • This paper was investigation of the stres corrosion cracking(SCC) mechanism and the properties of corrosion fracture surface of glass fiber reinforced plastics(GFRP) produced by hand lay up(HLU) method in synthetic sea water. Test material is GFRP, that was used vinylester type epoxy acrylate resin and an unsaturated polyester as the matrix and the chopped strand mat(CSM) type E-glss fiber as the reinforcement. The slow strain rate test(SSRT) was performed on dry, wet and saturated wet specimens in sea water. Here the pH concentration of synthetic sea water was 8.2 and the strain rate is 1 x $10^{-6}$($sec^{-1}$) and test temperature ranges varied from $-60^{\circ}C$ to $80^{\circ}C$. It could be confirmed the fact that wet specimens tested at a particular test temperature ranges were appeared the eviences of SCC such as con-planar, mirror and hackle zone. Moreover, SCC of GFRP in sea water was characterised by falt fracture surfaces with only small amounts of fiber pull-out, in partial.

Mechanical characteristics of CRM asphalt (CRM아스팔트의 바인더특성 분석)

  • Lee, Kyung ha
    • International Journal of Highway Engineering
    • /
    • v.2 no.1
    • /
    • pp.123-133
    • /
    • 2000
  • The asphalt mixture with CRM(Crumb Rubber Modifier) is known to show a better performance in resisting thermal cracking, fatigue cracking, and rutting compared with the conventional mixture. In this research, the lab tests on the physical and the mechanical characteristics of the domestic crumb rubber modified asphalt binder and conventional asphalts (AP-3, AP-5) were conducted. The physical test results show that CRM asphalt has better physical characteristics than that of conventional asphalts. The dynamic shear rheometer test results in high temperature show that CRM asphalt has higher complex shear modulus and aging resistance than those of conventional asphalts. And, the bending beam rheometer in low temperature test results show that CRM asphalt has higher resistance to thermal cracking than that of conventional asphalts.

  • PDF

Effects of a Lift Height on the Thermal Cracking in Wall Structures

  • Kim, Sang-Chel
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.47-56
    • /
    • 2000
  • Once a structure fabricated with mass concrete is in a form of wall such as retaining wall, side walls of a concrete caisson and so on, cracks induced by hydration heat have been known to be governed by exterior restraints which are mainly related to the boundary conditions of the structure. However, it is thought that the degree of restraints can be alleviated considerably only if a lift height of concrete placement or a panel size of the wall is selected properly before construction. As a way of minimizing thermal cracking commonly observed in massive wall-typed structure, this study aimed at evaluating effects of geometrical configuration on the temperature rise and thermal stress through parametric study. Evaluation of the effect was also performed for cement types using anti-sulphate cement, blast furnace slag cement and cement blended with two mineral admixture and one ordinary Portland Cement. so called ternary blended cement. As a result of analytical study, it was found that a lift height of concrete placement is the most important factor in controlling thermal cracking in massive wall, and the increase of a lift height is not always positive to the crack occurrence as not expected.

  • PDF

Effects of environmental parameters on chloride-induced stress corrosion cracking behavior of austenitic stainless steel welds for dry storage canister application

  • Seunghyun Kim;Gidong Kim;Chan Kyu Kim;Sang-Woo Song
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.317-327
    • /
    • 2024
  • This study investigated the chloride-induced stress corrosion cracking (CISCC) behavior expected to occur in welds of austenitic stainless steel, which are considered candidate materials for dry storage containers for spent nuclear fuel. The behavior was studied by varying temperature, relative humidity (RH), and chloride concentration. 304L-ER308L welded plates were processed into U-bend specimens and exposed to a cyclic corrosion chamber for 12 weeks. The CISCC behavior was then analyzed using electron microscopy. A previous study by the authors confirmed that CISCC occurred in ER308L at 60 ℃, 30% RH, and 0.6 M NaCl via selective corrosion of δ-ferrite. When the temperature was lowered from 60 ℃ to 50 ℃, CISCC still occurred. However, when the humidity was reduced to 20% RH, CISCC did not happen. This can be attributed to the retardation of the deliquescence of NaCl at lower humidity, which was insufficient to promote CISCC. Furthermore, increased chloride concentration to 1.0 M resulted in the absence of CISCC and widespread surface corrosion with severe pitting corrosion because of the increase in thin film thickness.