• Title/Summary/Keyword: Temperature Cracking

Search Result 612, Processing Time 0.023 seconds

Cost-effective Machine Learning Method for Predicting Package Warpage during Mold Curing (몰드 경화 공정 중 패키지 휨 예측을 위한 비용 절감형 머신러닝 방법)

  • Seong-Hwan Park;Tae-Hyun Kim;Eun-Ho Lee
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.31 no.3
    • /
    • pp.24-37
    • /
    • 2024
  • Due to the thin nature of semiconductor packages, even minor thermal loads can cause significant warpage, impacting product reliability through issues like delamination or cracking. The mold curing process, which encloses the package to protect the semiconductor chip, is particularly challenging to predict due to the complex thermal, chemical, and mechanical interactions. This study proposes a cost-effective machine learning model to predict warpage in the mold curing process. We developed methods to characterize the curing degree based on time and temperature and quantify the material's mechanical properties accordingly. A Finite Element Method (FEM) simulation model was created by integrating these properties into ABAQUS UMAT to predict warpage for various design factors. Additionally, a Warpage formula was developed to estimate local warpage based on the package's stacking structure. This formula combines bending theory with thermo-chemical-mechanical properties and was validated through FEM simulation results. The study presents a method to construct a machine learning model for warpage prediction using this formula and proposes a cost-effective approach for building a training dataset by analyzing input variables and design factors. This methodology achieves over 98% prediction accuracy and reduces simulation time by 96.5%.

Changes of Yield and Quality in Potato (Solanum tuberosum L.) by Heat Treatment (폭염처리에 의한 감자의 수량성과 품질 변화)

  • Lee, Gyu-Bin;Choi, Jang-Gyu;Park, Young-Eun;Jung, Gun-Ho;Kwon, Do-Hee;Jo, Kwang-Ryong;Cheon, Chung-Gi;Chang, Dong Chil;Jin, Yong-Ik
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.24 no.3
    • /
    • pp.145-154
    • /
    • 2022
  • Due to abnormal weather conditions caused by climate change, natural disasters and damages are gradually increasing around the world. Global climate change as accompanied by warming is projected to exert adverse impact on production of potato, which is known as cool season crop. Even though, role of potato as a food security crop is expected to increase in the future, the climate change impacts on potato and adaption strategies are not sufficiently established. Therefore, this study was conducted to analyze the damage pattern of potatoes due to high temperature treatment and to evaluate the response of cultivars. T he high temperature treatment (35~38℃) induced heat stress by sealing the plastic house in midsummer (July), and the quantity and quality characteristics of potatoes were compared with the control group. T otal yield, marketable yield (>80 g) and the number of tubers per plants decreased when heat treatment was performed, and statistical significance was evident. In the heat treatment, 'Jayoung' cultivar suffered a high heat damage with an 84% reduction in yield of >80 g compared to the control group. However, in Jopung cultivar, the decrease was relatively small at 26%. Tuber physiological disturbances (Secondary growth, Tuber cracking, Malformation) tended to increase in the heat stress. Under heat conditions, the tubers were elongated overall, which means that the marketability of potatoes was lowered. T he tuber firmness and dry matter content tended to decrease significantly in the heat-treated group. T herefore, the yield and quality of tubers were damaged when growing potatoes in heat conditions. T he cultivar with high heat adaptability was 'Jopung'. T his result can be used as basic data for potato growers and breeding of heat-resistant cultivars.