• Title/Summary/Keyword: Temperature Controller

Search Result 720, Processing Time 0.033 seconds

Performance Increase for a 2 kW Open Cathode Type Fuel Cell Using Temperature/Humidity Control (2 kW급 개방 캐소드형 연료전지 출력 향상을 위한 온습도 제어)

  • YUAN, WEIWEI;CHOI, MIHWA;YANG, SEUGRAN;KIM, YOUNG-BAE
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.4
    • /
    • pp.369-376
    • /
    • 2017
  • Temperature and humidity regulations of an open-cathode PEM fuel cell with balance of plant (BOP) are developed in this study. The axial fan, a bubble humidifier, set of solenoid valves and a controller are used to perform temperature and humidity control simultaneously. A fuzzy controller is designed, and it shows its superiority in real-time controlling for strong non-linear dynamical fuel cell system. The axial fan speed is used for temperature control and solenoid valve on/off signal of the bubble humidifier is used for humidity control. The axial fan speed is controlled to keep the fuel cell temperature within the desired point. Meanwhile, the bubble humidifier is utilized to moisture hydrogen to manage the water content of membrane. The results show that the proposed fuzzy controller effectively increases the output power of 10% for a PEM fuel cell.

Genetic algorithm-based design of a nonlinear PID controller for the temperature control of load-following coolant systems (부하추종 냉각수 시스템의 온도 제어를 위한 유전알고리즘 기반 비선형 PID 제어기 설계)

  • Yu-Soo, LEE;Soon-Kyu, HWANG;Jong-Kap, AHN
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.4
    • /
    • pp.359-366
    • /
    • 2022
  • In this study, the load fluctuation of the main engine is considered to be a disturbance for the jacket coolant temperature control system of the low-speed two-stroke main diesel engine on the ships. A nonlinear PID temperature control system with satisfactory disturbance rejection performance was designed by rapidly transmitting the load change value to the controller for following the reference set value. The feed-forwarded load fluctuation is considered the set points of the dual loop control system to be changed. Real-coded genetic algorithms were used as an optimization tool to tune the gains for the nonlinear PID controller. ITAE was used as an evaluation function for optimization. For the evaluation function, the engine jacket coolant outlet temperature was considered. As a result of simulating the proposed cascade nonlinear PID control system, it was confirmed that the disturbance caused by the load fluctuation was eliminated with satisfactory performance and that the changed set value was followed.

Development of a Temperature Controller for a Semiconductor Test Handler (반도체 테스트 핸들러를 위한 온도 제어기 개발)

  • Cho, Su-Young;Kim, Jae-Yong;Kang, Tae-Sam;Lee, Ho-Joon;Koh, Kwang-Ill
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.4
    • /
    • pp.395-401
    • /
    • 1999
  • In this paper, a temperature controller for a semiconductor test handler is proposed. First, a handware system for identification and control is established using RTD sensors, an A/D converter, solid state relays, a heater, and a computer system. Second, using ARMAX model and least square method, a chamber model for the design of a controller is identified through experiments. The identified model is verified to describe the real plant very well in the sense that it shows very similar input-output responses to those of the real system. With the identified model an LQG controller is designed. Frequency response of the designed controller shows that it has 15 dB of gainmargin and (-50˚, +50˚) of phase margin. Experiment with a real test handler demonstrates a good performance in the sense that its overshoot and steady state error are smaller and response time is faster, compared with those of a conventional PID controller.

  • PDF

Robust $H_{\infty}$ Controller Design for Steam Generator Water Level Control using Mixed $H_{\infty}$ Optimization Method (혼합 $H_{\infty}$ 최적화 기법을 이용한 견실 $H_{\infty}$ 증기발생기 수위제어기 설계)

  • 서성환;조희수;박홍배
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.3
    • /
    • pp.363-369
    • /
    • 1999
  • In this paper, we design the robust $H_{\infty}$ controller for water level control of steam generator using a mixed $H_{\infty}$ optimization with model-matching method. Firstly we choose the desired model which has good disturbance rejection performance. Secondly we design a stabilizing controller to keep the model-matching error small and also provide sufficiently large stability margin against additive perturbations of the nominal plant. Simulation results show that proposed robust $H_{\infty}$ controller at specific power operation has satisfactory performances against the variations of load power, steam flow rate, primary circuit coolant temperature, and feedwater temperature. It can be also observed that the proposed robust $H_{\infty}$ controller exhibits better robust stability than conventional PI controller.

  • PDF

On the Temperature Control of Boiler using Neural Network Predictive Controller (신경회로망의 예측제어기를 이용한 보일러의 온도제어에 관한 연구)

  • Eom, Sang-Hee;Lee, Kwon-S.;Bae, Jong-Il
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.798-800
    • /
    • 1995
  • The neural network predictive controller(NNPC) is proposed for the attempt to mimic the function of brain that forecasts the future. It consists of two loops, one is for the prediction of output(Neural Network Predictor) and the other one is for control the plant(Neural Network Controller). The output of NNC makes the control input of plant, which is followed by the variation of both plant error and prediction error. The NNP forecasts the future output based upon the current control input and the estimated control output. The method is applied to the control of temperature in boiler systems. The proposed NNPC is compared with the other conventional control methods such as PID controller, neural network controller with specialized learning architecture, and one-step-ahead controller. The computer simulation and experimental results show that the proposed method has better performances than the other methods.

  • PDF

A Comparison Characteristics on the Structures of the LED Traffic Signal Lamp Controller for the Domestic Use (국내 LED 교통 신호등용 안정기 구조별 특성 비교)

  • Park, Chong-Yeun;No, Kyung-Ho
    • Journal of Industrial Technology
    • /
    • v.25 no.B
    • /
    • pp.183-188
    • /
    • 2005
  • Instead of the incandescent lamps the LED lamps have been used on the traffic signal lamp with the advantages of small loss, no lens and long life. In this paper, we have compared three kinds of the LED controller structures and showed the LED array decision methods. We studied the temperature characteristics on LED and the temperature compensation network. The experimental results showed that the electrical characteristics of three kinds of the LED controller structures were different each other. We concluded that the temperature compensation is the important technique, the best compensation network has the ${\pm}10%$ variation for the luminous intensity.

  • PDF

Design of PI and Feedforward Controller for Precise Temperature Control of Oil Cooler System (오일쿨러의 고정밀 온도 제어를 위한 PI 및 피드포워드 제어기 설계)

  • Byun, J.Y.;Jeong, S.K.
    • Journal of Power System Engineering
    • /
    • v.14 no.6
    • /
    • pp.89-95
    • /
    • 2010
  • This paper deals with design method of proportional-integral(PI) and feedforward controller for obtaining precise temperature and high energy efficiency of oil cooler system in machine tools. The compressor's speed and opening angle of an electronic expansion valve are controlled to keep reference value of temperature at oil outlet and superheat of an evaporator. Especially, the feedforward controller is added to suppress temperature fluctuation under abrupt disturbances. Through some experiments, the suggested method can control the target temperature within steady state error of ${\pm}0.l^{\circ}C$ and maximum overshoot $0.2^{\circ}C$ under abrupt disturbances.

Design and Fabrication of Power Controller for Temperature Control on Semiconductor Thermal Processing (반도체 열처리 공정을 위한 온도 조절기용 전력 제어장치의 설계 및 제작)

  • 주동만;민경일;황재효
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.3 no.4
    • /
    • pp.257-262
    • /
    • 2002
  • A design method of a power controller for controlling the temperature adopted in RTP (rapid thermal processing) which uses the phase control method is presented. The power controller is fabricated by using the design method presented in this paper and is tested. As the results, the range of average voltage from the variable output is 0∼198.06 V and the control resolution is 48.356 mV (12 bit) at the range of the input signal (0∼10 V).

  • PDF

Artificial Neural Network and Application in Temperature Control System

  • Sugisaka, Masanori;Liu, Zhijun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1998.10a
    • /
    • pp.260-264
    • /
    • 1998
  • In this paper, we implemented the neuro-computer called MY-NEUPOWER in our research to carry out the artificial neural networks (ANN) calculating. An application software was developed based on a neural network using back-propagation (BP) algorithm under the UNIX platform by the specified computer language named MYPARAL. This neural network model was used as an auxiliary controller in the temperature control of sinter cooler system in steel plant which is a nonlinear system. The neural controller was trained off-line using the real input-output data as training pairs. We also made the system description of adaptive neural controller on the same temperature control system. We will carry out the whole system simulation to verify the suitability of neural controller in improving the system features.

  • PDF

Disturbance observer-based robust backstepping load-following control for MHTGRs with actuator saturation and disturbances

  • Hui, Jiuwu;Yuan, Jingqi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3685-3693
    • /
    • 2021
  • This paper presents a disturbance observer-based robust backstepping load-following control (DO-RBLFC) scheme for modular high-temperature gas-cooled reactors (MHTGRs) in the presence of actuator saturation and disturbances. Based on reactor kinetics and temperature reactivity feedback, the mathematical model of the MHTGR is first established. After that, a DO is constructed to estimate the unknown compound disturbances including model uncertainties, external disturbances, and unmeasured states. Besides, the actuator saturation is compensated by employing an auxiliary function in this paper. With the help of the DO, a robust load-following controller is developed via the backstepping technique to improve the load-following performance of the MHTGR subject to disturbances. At last, simulation and comparison results verify that the proposed DO-RBLFC scheme offers higher load-following accuracy, better disturbances rejection capability, and lower control rod speed than a PID controller, a conventional backstepping controller, and a disturbance observer-based adaptive sliding mode controller.