• Title/Summary/Keyword: Temperate

Search Result 1,088, Processing Time 0.026 seconds

Secondary human impacts on the forest understory of Ulleung Island, South Korea, a temperate island

  • Andersen, Desiree
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.202-211
    • /
    • 2019
  • Oceanic islands are biologically important for their unique assemblages of species and high levels of endemism and are sensitive to environmental change because of their isolation and small species source pools. Habitat destruction caused by human landscape development is generally accepted as the main cause of extinction on islands, with exotic species invasion a secondary cause of extinction, especially on tropical islands. However, secondary impacts of human development (e.g., general degradation through resource use and exotic species introduction) are understudied on temperate islands. To determine secondary impacts of human development on the understory vegetation community, 90 field sites on Ulleung Island, South Korea, were sampled during the summer of 2016. Understory vegetation was chosen as it is a proxy for ecosystem health. Diversity and percent cover of introduced, native, and endemic species were tested against proximity to developed areas and trail usage using a model selection approach. Diversity was also tested against percent cover of three naturalized species commonly found in survey plots. The main finding was that distance to development, distance to town, and trail usage have limited negative impacts on the understory vegetation community within best-supported models predicting native and introduced cover and diversity. However, endemic species cover was significantly lower on high usage trails. While there are no apparent locally invasive plant species on the island at the time of this study, percent cover of Robinia pseudoacacia, a naturalized tree species, negatively correlated with plot diversity. These findings indicate that forests on Ulleung Island are not experiencing a noticeable invasion of understory vegetation, and conservation efforts can be best spent preventing future invasions.

Association of Duration and Rate of Grain Filling with Grain Yield in Temperate Japonica Rice (Oryza sativa L.)

  • Yang, Woon-Ho;Park, Tae-Shik;Kwak, Kang-Su;Choi, Kyung-Jin;Oh, Min-Hyuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.52 no.1
    • /
    • pp.112-121
    • /
    • 2007
  • Grain filling is a crucial factor that determines grain yield in crops since it is the final process directly associated with crops' yield performance. Grain filling process can be characterized by the interaction of rate and duration of grain filling. This study was conducted, using 16 temperate japonica rice genotypes, with aims to (1) seek variations in grain filling duration and rate on area basis, (2) compare the contribution of grain filling duration and rate to grain yield, and (3) examine the influence of temperature and solar radiation for effective grain filling on grain yield in relation to grain filling duration and rate. Grain filling rate and duration exhibited highly significant variations in the ranges of $20.7{\sim}46.3\;g\;m^{-2}d^{-1}\;and\;11.2{\sim}35.5$ days, respectively, depending on rice genotypes. Grain yield on unit area basis was associated positively with grain filling duration but negatively with grain filling rate. Grain filling rate and duration were negatively correlated with each other. Final grain weight increased linearly with the rise in both cumulative mean temperature and cumulative solar radiation for effective grain filling. Higher cumulative mean temperature and cumulative solar radiation for effective grain filling were the results of longer grain filling duration, but not necessarily higher daily mean temperature and daily solar radiation for effective grain filling. Grain filling rate demonstrated an increasing tendency with the rise in daily mean temperature for effective grain filling but their relationship was not obviously clear. It was concluded that grain filling duration, which influenced cumulative mean temperature and cumulative solar radiation for effective grain filling, was the main factor that determined grain yield on unit area basis in temperate Japonica rice.

The Yellow Sea Warm Current and the Yellow Sea Cold Bottom Water, Their Impact on the Distribution of Zooplankton in the Southern Yellow Sea

  • Wang, Rong;Zuo, Tao
    • Journal of the korean society of oceanography
    • /
    • v.39 no.1
    • /
    • pp.1-13
    • /
    • 2004
  • The Yellow Sea Warm Current (YSWC) and the Yellow Sea Cold Bottom Water (YSCBW) are two protruding features, which have strong influence on the community structure and distribution of zooplankton in the Yellow Sea. Both of them are seasonal phenomena. In winter, strong north wind drives southward flow at the surface along both Chinese and Korean coasts, which is compensated by a northward flow along the Yellow Sea Trough. That is the YSWC. It advects warmer and saltier water from the East China Sea into the southern Yellow Sea and changes the zooplankton community structure greatly in winter. During a cruise after onset of the winter monsoon in November 2001 in the southern Yellow Sea, 71 zooplankton species were identified, among which 39 species were tropical, accounting for 54.9 %, much more than those found in summer. Many of them were typical for Kuroshio water, e.g. Eucalanus subtenuis, Rhincalanus cornutus, Pareuchaeta russelli, Lucicutia flavicornis, and Euphausia diomedeae etc. 26 species were warm-temperate accounting for 36.6% and 6 temperate 8.5%. The distribution pattern of the warm water species clearly showed the impact of the YSWC and demonstrated that the intrusion of warmer and saltier water happened beneath the surface northwards along the Yellow Sea Trough. The YSCBW is a bottom pool of the remnant Yellow Sea Winter Water resulting from summer stratification and occupy most of the deep area of the Yellow Sea. The temperature of YSCBW temperature remains ${\leq}{\;}10^{\circ}C$ in mid-summer. It is served as an oversummering site for many temperate species, like Calanus sinicus and Euphaisia pacifica. Calanus sinicus is a dominant copepod in the Yellow Sea and East China Sea and can be found throughout the year with the year maximum in May to June. In summer it disappears in the coastal area and in the upper layer of central area due to the high temperature and shrinks its distribution into YSCBW.

Comparison of Amylogram Properties among Several Subspecies of Rice (여러 아종 벼 품종들간 아밀로그램 특성 비교)

  • Kwak Tae-Soon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.50 no.3
    • /
    • pp.186-190
    • /
    • 2005
  • This experiment was conducted to collect the basic information on the varietal diversity in amylogram properties of 3 different rice sub-species under tropical conditions in IRRI 2001 wet season based upon correlation and principal component analysis. The peak viscosity and breakdown property of Tongil type, i.e.; temperate Indica species showed higher similarity with Japonica type species rather than typical Indica and tropical japonica types. The amylogram properties such as final viscosity, pasting consistency and setback of Tongil type varieties were lower than those of typical Indica and tropical japonica types. The peak viscosity showed positive correlation with trough, while the breakdown showed negative correlation with setback in all tested 3 rice subspecies. The first principal component was applicable to increase the gelatinization temperature, final viscosity, pasting consistency and setback, and applicable to decrease the peak viscosity and breakdown. Varietal classification by the principal component score of each pedigree could be applied to the interpretation of the community by the scatter diagram for the amylogram properties to the different sub-species of rice at IRRI conditions.

Lignin signatures of vegetation and soils in tropical environments

  • Belanger, E.;Lucotte, M.;Gregoire, B.;Moingt, M.;Paquet, S.;Davidson, R.;Mertens, F.;Passos, C.J.S.;Romana, C.
    • Advances in environmental research
    • /
    • v.4 no.4
    • /
    • pp.247-262
    • /
    • 2015
  • The few lignin biomarker studies conducted in tropical environments are hampered by having to use references signatures established for plants and soils characteristic of the temperate zone. This study presents a lignin biomarker analysis (vanillyls (V), p-hydroxyls (P), syringyls (S), cinnamyls (C)) of the dominant plant species and soil horizons as well as an analysis of the interrelated terrigenous organic matter (TOM) dynamics between vegetation and soil of the $Tapaj{\acute{o}}s$ river region, an active colonization front in the Brazilian Amazon. We collected and analyzed samples from 17 fresh dominant plant species and 48 soil cores at three depths (0-5 cm, 20-25 cm, 50-55 cm) from primary rainforest, fallow forest, subsistence agriculture fields and pastures. Lignin signatures in tropical plants clearly distinguish from temperate ones with high ratios of Acid/aldehyde of vanillyls ((Ad/Al)v) and P/V+S. Contrary to temperate environments, similarly high ratios in tropical soils are not related to TOM degradation along with pedogenesis but to direct influence of plants growing on them. Lignin signatures of both plants and soils of primary rainforest and fallow forest clearly distinguish from those of non-forested areas, i.e., agriculture fields and pastures. Attalea speciosa Palm trees, an invasive species in all perturbed landscapes of the Amazon, exhibit lignin signatures clearly distinct from other dominant plant species. The study of lignin signatures in tropical areas thus represents a powerful tool to evaluate the impact of primary rainforest clearing on TOM dynamics in tropical areas.

Estimates of Direct and Maternal Effects on Growth Traits in Angora Rabbits

  • Niranjan, S.K.;Sharma, S.R.;Gowane, G.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.8
    • /
    • pp.981-986
    • /
    • 2010
  • Genetic parameters of growth traits were estimated in the German Angora rabbit reared in the sub-temperate region of India. Estimates of (co)variance components were obtained for body weights at weaning (42 days) and post-weaning at 84, 126 and 168 days. A total of 8,324 animal records were used for the analysis of these traits. The data were analyzed by restricted maximum likelihood (REML) fitting six animal models with various combinations of direct and maternal effects. A log likelihood ratio test was used to select the most appropriate univariate model for each trait. Direct heritability estimates were observed to be moderate for the traits under study. Heritability estimates for weaning (42 d), 84, 126 and 168 d weights obtained from the best models were $0.25{\pm}0.05$, $0.17{\pm}0.05$, $0.21{\pm}0.06$ and $0.12{\pm}0.05$. Maternal effects had higher importance at weaning, and declined with the advancement of age. Significant maternal permanent environmental effect on weaning and post-weaning weights was a carryover effect of maternal influences during pre-weaning age. The estimated repeatabilities of doe effects on body weights were 0.37, 0.22, 0.18 and 0.28 at weaning, 84, 126 and 168 d body weight, respectively. Results indicated that modest rate of genetic progress is possible for body weight traits of Angora rabbit through selection. Similarly, these growth traits could be included in selection criteria along with wool traits for early selection of the animals.

Development of Stem Profile and Taper Equation for Quercus acuta in Jeju Experiment Forests (제주시험림의 붉가시나무 수간형태와 수간곡선식 추정)

  • Chung, Young-Gyo;Kim, Dae-Hyun;Kim, Cheol-Min
    • Journal of Korean Society of Forest Science
    • /
    • v.99 no.1
    • /
    • pp.57-61
    • /
    • 2010
  • Data with collected from 278 trees sampled through out the climatic range of Quercus acuta in Jeju Experiment Forests. The models tested to select the best-fit equations form the Max & Burkhart's model, Kozak's model, and Lee's model. Performance of the equations in predicting of residuals on predicted values. In result, all three models gave slightly better values of fit statistics. In plotting residuals against predicted diameter, Max & Burkhart's model showed underestimation in predicting small diameter and Lee's Model did the same in predicting small diameter. Based on the above analysis of three models in predicting stem taper, Kozak's model was chosen for the best-fit stem taper equations, and its parameter estimates was given for Quercus acuta. Kozak's model was used to develop a stem volume table outside bark for Quercus acuta.

Effect of Feed Protein Source on Digestion and Wool Production in Angora Rabbit

  • Bhatt, R.S.;Sawal, R.K.;Mahajan, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.12 no.7
    • /
    • pp.1075-1079
    • /
    • 1999
  • Adult German cross $(German{\times}British{\times}Russian)$ angora rabbits (one year age), 32 in number were divided randomly into four groups $(T_1-T_4)$ with equal sex ratio and fed diets containing $T_1$ groundnut cake (GNC); $T_3$, soyaflakes (SF); $T_4$, sunflower cake (SFC) and $T_2$, a mixture of all the three cakes along with green forage as roughage for a period of 9 months. Nine per cent protein was added from each protein source. Fibre level was maintained by adjusting the level of rice phak in the diets. The diets were iso-nitrogenous and contained similar level of fibre. DMI through roughage was not affected due to source of protein in the diet, however, DMI through concentrate was higher $(p{\leq}0.05)$ with SFC diet, which resulted in higher total feed intake in the group $(T_4)$. Body weights increased up to second shearing, thereafter it decreased due to summer depression. Diet containing soyaflakes sustained higher wool yield whereas, it was lowest $(p{\leq}0.05)$ on SFC diet. Wool attributes (staple length, medullation, fibre diameter) were not affected due to source of protein in the diet. Digestibility of fibre and its fractions (ADF, cellulose, hemicellulose) decreased $(p{\leq}0.05)$ with incorporation of SFC in the diets. Balance of calcium was lowest whereas, that of nitrogen was highest with SFC diet $(T_4)$. Biological value of N and net protein utilization was better when different protein sources were mixed together $(T_2)$. Protein quality of soyaflakes proved better for wool production followed by groundnut cake and mixture of three protein sources. Sunflower cake alone or in combination decreased wool production which may be checked by supplementation of amino acids and energy.

Monitoring soil respiration using an automatic operating chamber in a Gwangneung temperate deciduous forest

  • Lee, Jae-Seok
    • Journal of Ecology and Environment
    • /
    • v.34 no.4
    • /
    • pp.411-423
    • /
    • 2011
  • This study was conducted to quantify soil $CO_2$ efflux using the continuous measurement method and to examine the applicability of an automatic continuous measurement system in a Korean deciduous broad-leaved forest. Soil respiration rate (Rs) was assessed through continuous measurements during the 2004-2005 full growing seasons using an automatic opening/closing chamber system in sections of a Gwangneung temperate deciduous forest, Korea. The study site was an old-growth natural mixed deciduous forest approximately 80 years old. For each full growth season, the annual Rs, which had a gap that was filled with data using an exponential function derived from soil temperature (Ts) at 5-cm depth, and Rs values collected in each season were 2,738.1 g $CO_2$ $m^{-2}y^{-1}$ in 2004 and 3,355.1 g $CO_2$ $m^{-2}y^{-1}$ in 2005. However, the diurnal variation in Rs showed stronger correlations with Ts (r = 0.91, P < 0.001 in 2004, r = 0.87, P < 0.001 in 2005) and air temperature (Ta) (r = 0.84, P < 0.001 in 2004, r = 0.79, P < 0.001 in 2005) than with deep Ts during the spring season. However, the temperature functions derived from the Ts at various depths of 0, -2, -5, -10, and -20 cm revealed that the correlation coefficient decreased with increasing soil depth in the spring season, whereas it increased in the summer. Rs showed a weak correlation with precipitation (r = 0.25, P < 0.01) and soil water content (r = 0.28, P < 0.05). Additionally, the diurnal change in Rs revealed a higher correlation with Ta than that of Ts. The $Q_{10}$ values from spring to winter were calculated from each season's dataset and were 3.2, 1.5, 7.4, and 2.7 in 2004 and 6.0, 3.1, 3.0, and 2.6 in 2005; thus, showing high fluctuation within each season. The applicability of an automatic continuous system was demonstrated for collecting a high resolution soil $CO_2$ efflux dataset under various environmental conditions.

Vegetational History of the Mulyeongari Fen by Pollen Analysis in Jeju Island, Korea (제주도 물영아리늪 퇴적물의 화분분석에 의한 식생변천)

  • Lee, Chang-Su;Kang, Sang-Joon;Choi, Kee-Ryong
    • Journal of Environmental Science International
    • /
    • v.20 no.3
    • /
    • pp.341-350
    • /
    • 2011
  • For the reconstruction of the past vegetational changes in Jeju Island, Korea, pollen analysis and radiocarbon dating on the sediments obtained from the Mulyeongari fen were carried out. By the results, the vegetational changes around the Mulyeongari fen from ca. 3,300 cal. yr BP to the present can be interpreted and reconstructed. The pollen record from the Mulyeongari fen was divided into two local pollen assemblage zones and three sub-pollen assemblage zones. Zone I (Quercus-Carpinus-Herbs Zone) was characterized by the predominance of Quercus(30~63%), Carpinus(9~35%) and herbs(40~424%). Zone II was characterized by three sub-pollen assemblage zones and the high occurrence ratio of the tree layer in comparison with Zone I. In Zone IIa (Quercus-Carpinus Zone), herbs(3~161%) were drastically decreased in predominance of Quercus(28~56%) and Carpinus(14~31%). In Zone IIb (Carpinus-Quercus Zone), Carpinus(36~48%) was preferentially increased but Quercus(29~39%) was slightly decreased. In Zone IIc (Quercus-Carpinus Zone), Carpinus(26~38%) was decreased inversely but Quercus(36~50%) was increased. In addition, Cyperaceae was also increased to 52%. Consequently, it is suggested that cool temperate southern/sub-montane vegetation composed of Quercus and Carpinus which was physiognomy of deciduous broad leaved forest was distributed around the Mulyeongari fen from ca. 3,300 cal. yr BP. In addition, Cyclobalanopsis(4~23%), Castanopsis(1~12%) and Myrica(under 1%) which are warm-temperate evergreen deciduous forest components were constantly appeared from this period. Accordingly, it can be inferred that the present vegetation type around the Mulyeongari fen was formed from ca. 180 cal. yr BP.