• 제목/요약/키워드: Temkin

검색결과 75건 처리시간 0.025초

Performance of an acidic extractant (D2EHPA) incorporated in IM used for extraction and separation of Methylene Blue and Rhodamin B

  • Aitali, S.;Kebiche-Senhadji, O.;Benamor, M.
    • Membrane and Water Treatment
    • /
    • 제7권6호
    • /
    • pp.521-537
    • /
    • 2016
  • Laboratory-scale experiments were carried out to investigate the adsorption equilibrium, the adsorption kinetics and facilitated transport of two cationic dyes (Methylene Blue (MB) and Rhodamine B (RB)) on Polymer Inclusion Membrane (D2EHPA-PIM). Different adsorption isotherms (Freundlich, Langmuir and Temkin models) as well as kinetics models indicated that the adsorption process is spontaneous and exothermic. Under the optimal conditions, the adsorption removal efficiencies reach about 93% and 97% for MB and RB respectively. Different extraction values by D2EHPA-PIM were obtained for the two cationic dyes: MB is weakly extracted at pH 2.0 (E% = 18.7%) whilst E% = 82.4% was observed for RB at the same pH. This difference was exploited in a mixture containg both the 2 cationic dyes for the selective extraction of RB at pH 2. Desorption of both dyes was achieved from the membrane by using acidic aqueous solutions and desorption ratio up to 90% was obtained. The formulas of the extracted complexes by the PIMs were, determined by the method of slopes. The dyes transport was elucidated using mass transfer analysis where in it found relatively high values of the initial flux ($J_0$) as 41.57 and $18.74{\mu}mol.m^2.s^{-1}$ for MB and RB respectively.

Isotherm, kinetic and thermodynamic studies of dye removal from wastewater solution using leach waste materials

  • DEN, Muhammed Kamil O;ONGAR, Sezen KUC UKC
    • Advances in environmental research
    • /
    • 제8권1호
    • /
    • pp.23-38
    • /
    • 2019
  • In this study, Malachite Green (MG) dye removal from synthetic wastewaters by adsorption process using raw boron enrichment waste (BEW) and it's modifications (with acid and ultrasound) were aimed. 81% MG removal was obtained by BEW at optimum equilibrium conditions (time: 40 min., dosage: 500 mg/dm3, pH: 5-6, speed: 200 rpm, 298 K). MG removal from wastewaters using acid modified boron enrichment waste (HBEW) was determined as 82% at optimum conditions (time: 20 min., dosage: 200 mg/dm3, pH: 10, speed: 200 rpm, 298 K). For ultrasound modified BEW (UBEW), the highest MG removal percent was achieved as 84% at optimum conditions (time: 30 min, dosage: 375 mg/ dm3, pH: 8, speed: 200 rpm, 298 K). The equilibrium data of Malachite Green was evaluated for BEW, HBEW and UBEW adsorbents by using sorption isotherms such as Langmuir, Freundlich and Temkin models, out of which Langmuir model (R2 = 0.971, 0.987 and 0.984) gave better correlation and maximum adsorption capacity was found to be 147.05, 434.78 and 192.30 mg/g, respectively. The adsorption kinetics followed the pseudo-second-order kinetic equation for sorption of MG onto wastes. A look at thermodynamic data reveals that natural sorption is spontaneous and endothermic because of free negative energy exchange and positive change in enthalpy, respectively. The results indicated that boron enrichment waste, and HCl and ultrasound-modified boron enrichment waste served as good alternative adsorbents in dye removal from wastewater.

모노리스 $NH_3-SCR$ 반응기 내에서의 $NH_3$ 흡.탈착 특성에 대한 연구 (A Study of $NH_3$ Adsorption/Desorption Characteristics in the Monolithic $NH_3-SCR$ Reactor)

  • 왕태중;백승욱;정명근;여권구
    • 한국자동차공학회논문집
    • /
    • 제14권3호
    • /
    • pp.125-132
    • /
    • 2006
  • Transient kinetics of $NH_3$ adsorption/desorption and of SCR(selective catalytic reduction) of NO with $NH_3$ were studied over vanadium based catalysts, such as $V_2O_5/TiO_2$ and $V_2O_5-WO_3/TiO_2$. In the present catalytic reaction process, NO adsorption is neglected while $NH_3$ is strongly chemisorbed on the catalytic surface. Accordingly, it is ruled out the possibility of a reaction between strongly adsorbed $NH_3$ and NO species in line with the hypothesis of an Eley-Rideal mechanism. The present kinetic model assumes; (1) non-activated $NH_3$ adsorption, (2) Temkin-type $NH_3$ coverage dependence of the desorption energy, (3) non-linear dependence of the SCR reaction rate on the $NH_3$ surface coverage. Thus, the surface heterogeneity for adsorption/desorption of $NH_3$ is taken into account in this model. The present study extends the pure chemical kinetic model based on a powdered-phase catalytic system to the chemico-physical one applicable to a realistic monolith reactor.

Sol-gel synthesis, computational chemistry, and applications of Cao nanoparticles for the remediation of methyl orange contaminated water

  • Nnabuk Okon Eddy;Rajni Garg;Rishav Garg;Samson I. Eze;Emeka Chima Ogoko;Henrietta Ijeoma Kelle;Richard Alexis Ukpe;Raphael Ogbodo;Favour Chijoke
    • Advances in nano research
    • /
    • 제15권1호
    • /
    • pp.35-48
    • /
    • 2023
  • Nanoparticles are known for their outstanding properties such as particle size, surface area, optical and electrical properties. These properties have significantly boasted their applications in various surface phenomena. In this work, calcium oxide nanoparticles were synthesized from periwinkle shells as an approach towards waste management through resource recovery. The sol gel method was used for the synthesis. The nanoparticles were characterized using X-Ray diffractometer (XRD), Fourier Transformed Infra-Red Spectrophotometer (FTIR), Brunauer Emmett Teller (BET), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and ultra violet visible spectrophotometer (UV-visible). While DLS and SEM underestimate the particle diameter, the BET analysis reveals surface area of 138.998 m2/g, pore volume = 0.167 m3/g and pore diameter of 2.47 nm. The nanoparticles were also employed as an adsorbent for the purification of dye (methyl orange) contaminated water. The adsorbent showed excellent removal efficiency (up to 97 %) for the dye through the mechanism of physical adsorption. The adsorption of the dye fitted the Langmuir and Temkin models. Analysis of FTIR spectrum after adsorption complemented with computational chemistry modelling to reveal the imine nitrogen group as the site for the adsorption of the dye unto the nanomaterials. The synthesized nanomaterials have an average particle size of 24 nm, showed a unique XRD peak and is thermally and mechanically stable within the investigated temperature range (30 to 70 ℃).

카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성 (Phosphate Adsorption-Desorption of Kaolinite KGa-2 (Source Clay))

  • 조현구;최재호;문동혁;김순오;도진영
    • 한국광물학회지
    • /
    • 제21권2호
    • /
    • pp.117-127
    • /
    • 2008
  • 카올리나이트 KGa-2 (표준 점토)의 인산염 흡착-탈착 특성을 규명하기 위하여 벳치(batch) 흡착 실험을 실시하였으며, 흡착 상태를 알아보기 위하여 ATR-FTIR (Attenuated Total Reflectance-Fourier Transform Infrared) 분광분석을 실시하였다. 인의 함량은 UV-VIS-IR 분광분석 기를 사용하여 측정하였으며, 이 때 파장은 820 nm를 이용하였다. pH 4에서 pH 9 범위 내에서 카올리나이트 KGa-2의 인산염 흡착량은 pH가 증가하면 대체적으로 증가하는 경향을 나타내지만, 인산염 농도에 따라 매우 다른 형태를 보여준다. 카올리나이트 KGa-2의 인산염 흡착 특성은 랑미어 흡착등온선, 템킨 흡착등온선, 프로인드리히 흡착등온선 순으로 잘 부합하며, 랑미어 최대 흡착능은 $204.1{\sim}256.5\;mg/kg$, 평균간은 232.5 mg/kg으로서, 카올리나이트 KGa-1b에 비하여 높은 인산염 흡착능을 가진다. 카올리나이트에 흡착된 대부분의 인산염이 탈착되기보다, 광물 내에 고착되는 경향을 나타내지만 이에 대해서는 후속적인 실험이 필요한 것으로 판단된다. ATR${\sim}$FTIR 스펙트럼에서 카올리나이트에 의한 흡수피크의 위치가 인 피크와 거의 중첩되고, 카올리나이트에 의한 흡수 피크의 강도가 인 피크에 비하여 월등히 크기 때문에 카올리나이트에 흡착된 인에 의한 피크를 카올리나이트 자체에 의한 피크로부터 분리하는 것이 거의 불가능하였다.