• Title/Summary/Keyword: Tellurium

Search Result 70, Processing Time 0.037 seconds

The Characteristic of Te Recovery in Gold Concentrate Using Electrolysis (전기분해법을 이용한 금정광내 Te 회수 특성)

  • Kim, Bong-Ju;Cho, Kang-Hee;Jo, Ji-Yu;Choi, Nag-Choul;Park, Cheon-Young
    • Economic and Environmental Geology
    • /
    • v.47 no.6
    • /
    • pp.645-655
    • /
    • 2014
  • In order to obtain pure metallic Te from gold concentrate, roasting treatment, hypochlorite leaching, Fe removal and electrolysis experiments were carried out. The contents of Au, Ag and Te from the concentrate sample and roasted sample were much more soluble in the hypochlorite solution than in aqua regia digestion, whereas the metals Pb, Zn, Fe and Cu were easier to leach with the aqua regia than the hypochlorite. With the addition of NaOH in the hypochlorite leaching solution prior to electrolysis, the Fe removal rate achieved was only 96% in the concentrate sample, while it reached 98% in the roasted sample. The results of electrolysis for 240 min, 98% of the metallic copper was recovered from the concentrate sample, while 99% was obtained from the roasted sample due to the removal of S by roasting. The amount of anode slime was also greater in the electrolytic solution with the roasted sample than with the concentrate sample. The results on the anode slime after the magnetic separation process showed the amount of metallic pure native tellurium recovered was greater in the roasted sample than in the concentrate sample.

EFFECTS OF ISOELECTRONIC IMPURITIES ON THE LIGHT EMISSION OF THE THIN-FILM ELECTROLUMINESCENCT DEVICES (박막 EL소자의 광방사에 있어서 등전자 불순물의 효과)

  • 박연수;곽민기;김현근;손상호;이상윤;이상걸
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.79-80
    • /
    • 1994
  • A systematic study on isoelectronic impurities in thin-film eletroluminescent devices (TFELD) has been made on the basis of the experimental analysis aimed at a survey for the blue-emitting materials. Codoping effects of isoelectronic impurities, such as oxygen(O), tellurium(Te), and lithium(Li), on the emissive characteristics of ZnS:Ce$^{3+}$ and ZnS:Tm$^{3+}$TFELD have been investigated by means of the X-ray diffraction studies, the Auger electron spectroscopy, the cathodoluminescent spectra, and the electroluminescent spectra. Experiment results reveal that oxygen codoping gives rise to an increase of the luminance, due to a suppression of the nonradiative energy transfer via sulfur vacancies Te codoping in ZnS:Ce$^{3+}$ TFELD result in a large change in the crystal field around Ce$^{3+}$ ions. Li codoping in ZnS:Tm$^{3+}$ TFELD causes the luminance to increase slightly, due to a lowering in the symmetry of Tm$^{3+}$ions. Likewise, the experimental results suggest strongly that an Auger-type enegy loss via lattece defects such an sulfur vacancies acts as a non-emissive in TFELD.ve in TFELD.

  • PDF

Transformation of Semiconductor Nanoparticles into Twisted-Nanoribbons under Light (빛을 이용한 CdTe 나노입자의 자기조립과정을 통한 나노리본으로의 변화)

  • Lee, Seung-Min;Lee, Kisun;Hong, Yeon Ki;Park, Byung Heung;Kim, Ki-Sub
    • Journal of Institute of Convergence Technology
    • /
    • v.3 no.1
    • /
    • pp.51-54
    • /
    • 2013
  • Cadmium telluride(CdTe) nanowires were successfully synthesized from individual nanoparticles via self-assembly and the evolutionary process was investigated. The oxidation of tellurium ions on CdTe nanoparticles resulted in the organization of individual nanoparticle into twisted-nanoribbons. The nanoparticles self-assembled to twisted ribbons under light while nanoparticles under dark transformed to straight nanowires made of several layers of individual nanoparticles. The images of nanoribbons were analysed based on transmission electron microscopy and scanning electron microscopy. The photoluminescence was blue-shifted from 555 to 545nm.

  • PDF

Properties of Te Fine Particle Doped SiO2 Gel by the Sol-Gel Method (졸-겔법에 의한 Te 미립자분산 SiO2 겔의 특성)

  • Mun, Shong-Soo;Jo, Bum-Rae;Kang, Bong-Sang
    • Korean Journal of Materials Research
    • /
    • v.12 no.8
    • /
    • pp.650-655
    • /
    • 2002
  • $SiO_2$ gels containing dispersed fine Te metal particles have been prepared by the sol- gel method using a starting solution containing Tetraethoxy Silane (Si($OC_2$ $H_{5}$ )$_4$), $H_2$O, Ethylalchol ($C_2$$H_{5}$OH), Nitric Acid ($HNO_3$) and Tellurium Tetracholoride ($TeCl_4$) in a several molar ratio. Gelling time of sols was about 3 days and viscosity of solution was very low about 2~3 cP for 3 days. Heat-treatments of the gel have been performed at 500, 700, 900, 1100 and $1300^{\circ}C$ for 1 hour, respectively. We have investigated TG-DTA, X-ray diffraction patterns and SEM of heat-treatmented gels. The size of Te fine particles dispersed in $SiO_2$ gel was about 0.8~1 $\mu\textrm{m}$ and the shape was almost quadrangle.

Syntheses of CdTe Quantum Dots and Nanoparticles through Simple Sonochemical Method under Multibubble Sonoluminescence Conditions

  • Hwang, Cha-Hwan;Park, Jong-Pil;Song, Mi-Yeon;Lee, Jin-Ho;Shim, Il-Wun
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.7
    • /
    • pp.2207-2211
    • /
    • 2011
  • Colloidal cadmium telluride (CdTe) quantum dots (QDs) and their nanoparticles have been synthesized by one pot sonochemical reactions under multibubble sonoluminescence (MBSL) conditions, which are quite mild and facile compared to other typical high temperature solution-based methods. For a typical reaction, $CdCl_2$ and tellurium powder with hexadecylamine and trioctylphosphine/trioctylphosphineoxide (TOP/TOPO) as a dispersant were sonicated in toluene solvent at 20 KHz and a power of 220W for 5-40 min at 60 $^{\circ}C$. The sizes of CdTe particles, in a very wide size range from 2 nm-30 ${\mu}m$, were controllable by varying the sonicating and thermal heating conditions. The prepared CdTe QDs show different colors from pale yellow to dark brown and corresponding photoluminescence properties due mainly to the quantum confinement effect. The CdTe nanoparticles of about 20 nm in average were found to have band gap of 1.53 eV, which is the most optimally matched band gap to solar spectrum.

Optical Transmission Characteristics of Tellurium-based Phase-change Chalcogenide Thin Films (Tellurium계 상변화 칼코겐화물 박막의 광투과 특성)

  • Yoon, Hoi Jin;Bang, Ki Su;Lee, Seung-Yun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.7
    • /
    • pp.408-413
    • /
    • 2016
  • The dielectric thin films applied to multi-colored semitransparent thin film solar cells have been extensively studied. In this work, we prepared GeSbTe and GeTe chalcogenide thin films using magnetron sputtering, and investigated their optical and phase-change properties to replace the dielectric films. The changes of surface morphology, sheet resistance, and X-ray diffraction of the Te-based chalcogenide films support the fact that the amorphous stability of GeTe films is superior to that of GeSbTe films. While both amorphous GeSbTe and GeTe films thinner than 30 nm have optical transparency between 5% and 60%, GeTe films transmit more visible light than GeSbTe films. It is confirmed by computer simulation that the color of semitransparent silicon thin film solar cells can be adjusted with the addition of GeSbTe or GeTe films. Since it is possible to adjust the contrast of the solar cells by exploiting the phase-change property, the two kinds of chalcogenide films are anticipated to be used as an optical layer in semitransparent solar cells.

Thin Film Deposition of Antimony Tellurides for Ge-Sb-Te Compounds

  • Han, Byeol;Kim, Yu-Jin;Park, Jae-Min;Mayangsari, Tirta R.;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.330.1-330.1
    • /
    • 2014
  • 개인용 노트북, 태블릿 PC, 핸드폰 기술 발전에 의해 언제 어디서나 데이터를 작성하고 기록하는 일들이 가능해졌다. 특히 cloud 시스템을 이용하여 데이터를 휴대기기에 직접 저장하지 않고 server에 기록하는 일들이 가능해짐에 따라 server 기기의 성능, server-room power 및 space 에 대한 관심이 증가하였다. Storage class memory (SCM) 이란 memory device와 storage device의 장점을 결합한 memory를 일컫는 기술로 현재 소형 디바이스 부분부터 점차 그 영역을 넓히고 있다. 그중 phase change material을 이용한 phase change memory (PCM) 기술이 가장 각광받고 있다. PCM의 경우 scaling됨에 의해 cell간의 열 간섭으로 인한 data 손실의 우려가 있어 cell의 면적을 최소화 하여 소자를 제작하여야 한다. 기존의 sputtering등의 PVD 방법으로는 한계가 있어 ALD 공정을 이용한 PCM에 대한 연구가 활발히 진행중이다. 특히 tellurium 원료기체로 silyl 화합물 [1]을 사용하여 주로 $Ge_2Sb_2Te_5$의 조성에 초점을 맞춰 진행되고 있으나, 세부 공정에 대한 기본적인 연구는 미비하다. 본 연구에서는 Ge-Sb-Te 3원계 박막을 형성하기 위한 Sb-Te 화합물의 증착 공정에 대한 연구를 수행하였다. 특히 원료기체로 Si이 없는 새로운 Te 원료기체를 이용하여 조성 조절을 하였고, 박막의 물성을 분석하였다. 또한 공정온도에 따른 박막의 물성 변화를 분석하였다.

  • PDF

MOCVD of $Bi_2Te_3$-based thermoelectric materials and their material characteristics (MOCVD법으로 성장된 열전재료용 $Bi_2Te_3$ 박막의 특성)

  • Kim, Jeong-Hun;Jung, Yong-Chul;Suh, Sang-Hee;Ju, Byeong-Kwon;Kim, Jin-Sang
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.13-15
    • /
    • 2005
  • The growth of $Bi_2Te_3$ thin films on (001) GaAs substrates by metal organic chemical vapour deposition (MOCVD) is discussed in this paper. The results of surface morphology, electrical and thermoelectrical properties as a function of growth parameters are given. The surface morphologies of $Bi_2Te_3$ films were strong1y dependent on the deposition temperatures. Surface morphologies varied from step-flow growth mode to island coalescence structures depending on deposition temperature. In-plane carrier concentration and electrical Hall mobility were highly dependent on precursor's ratio of Te/Bi and deposition temperature. The high Seebeck coefficient (of $-160{\mu}VK^{-1}$) and good surface morphology of our result is promising for $Bi_2Te_3$ based thermoelectric thin film and two dimensional supperlattice device applications.

  • PDF

Bi 주입량에 따른 MOCVD 법을 이용한 Tellurium 박막 증착

  • Lee, Hong-Gyu;Jeong, Su-Hwan;Kim, Yong-Gyu;Gang, Sang-U
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.180-180
    • /
    • 2011
  • 재료의 양단간에 온도차를 주어 전압 또는 전류가 발생하는 지벡효과와 반대로 전위차를 주어 온도차를 유도하는 펠티에 효과를 열전효과로 일컫는다. 이 열전효과에 관한 연구는 그 특수성 때문에 1950년대 이후로부터 많은 관심을 받아왔다. 최근 들어 석유자원의 고갈 및 신재생에너지에 대한 관심의 고조와 맞물리면서 열전재료 및 소자에 연구는 더욱 활발히 이루어지고 있다. 전도성이 있는 모든 물질은 열전효과를 가지는 데, 그 중 Bi-Te 합금계의 열전 물질은 상온에서 가장 우수한 열전성능지수를 가지는 것으로 보고되어, 이를 이용한 열전 재료에 대한 많은 연구가 이루어져 왔다. 현재 상용화된 열전소자는 Bi-Te bulk를 이용하여 제조되고 있으나 열전성능지수의 한계를 극복하기 위해 나노구조화, 박막화시키는 연구가 활발히 진행되고 있다. 특히 박막화를 통해 열전소자의 상용화 및 양산화에 일조할 수 있을 것으로 예상된다. 하지만 열전소자의 양산화를 위해서는 대량생산에 용이한 증착공정이 개발되어야 한다. 증착공정 중 가장 양산화에 유리한 공정이 MOCVD (metal organic chemical vapor deposition)라고 생각되지만 이를 위해선 전구체의 특성 평가 및 공정개발이 필요하다. 따라서 본 연구팀은 MOCVD 공정을 이용하여 저온, 저압에서 Bi-Te 합금계의 박막 성장에 관한 연구를 수행하였다. 또한 적외선 분광 시스템을 활용하여 여러 전구체 중 최적의 Bi, Te 전구체 조합을 선별해내었다. 이 과정 속에서 Te 전구체의 독특한 분해특성 및 증착특성을 확인하였고, 이러한 특성을 조절하기 위해 Bi 전구체가 중요한 역할을 한다는 것을 확인하였다.

  • PDF

Growth and characterization of $Cu_2ZnSnSe_4$ (CZTSe) thin films by sputtering of binary selenides and selenization

  • Munir, Rahim;Jung, Gwang-Sun;Ahn, Byung-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.98.2-98.2
    • /
    • 2012
  • Thin film solar cells are growing up in the market due to their high efficiency and low cost. Especially CdTe and $CuInGaSe_2$ based solar cells are leading the other cells, but due to the limited percentage of the elements present in our earth's crust like Tellurium, Indium and Gallium, the price of the solar cells will increase rapidly. Copper Zinc Tin Sulfide (CZTS) and Copper Zinc Tin Selenide (CZTSe) semiconductor (having a kesterite crystal structure) are getting attention for its solar cell application as the absorber layer. CZTS and CZTSe have almost the same crystal structure with more environmentally friendly elements. Various authors have reported growth and characterization of CZTSe films and solar cells with efficiencies about 3.2% to 8.9%. In this study, a novel method to prepare CZTSe has been proposed based on selenization of stacked Copper Selenide ($Cu_2Se$), Tin Selenide ($SnSe_2$) and Zinc Selenide (Zinc Selenide) in six possible stacking combinations. Depositions were carried out through RF magnetron sputtering. Selenization of all the samples was performed in Close Space Sublimation (CSS) in vacuum at different temperatures for three minutes. Characterization of each sample has been performed in Field Emission SEM, XRD, Raman spectroscopy, EDS and Auger. In this study, the properties and results of $Cu_2ZnSnSe_4$ thin films grown by selenization will be presented.

  • PDF