Journal of Institute of Control, Robotics and Systems
/
v.18
no.3
/
pp.224-229
/
2012
In this paper, we propose a correction method for astronomical telescope using recursive least square method. There are two ways to move a telescope : equatorial operation and altazimuth operation. We must align polar axis of a equatorial telescope with the north celestial pole and adjust the horizontal axis of a altazimuth telescope exactly to match the celestial coordinate system with the telescope coordinate system. This process needs time and expertise. We can skip existing process and correct a tracking error easily by deriving the relationship of the celestial coordinate system and the telescope coordinate system using the proposed correction method. We obtain the coordinate of a celestial body in the celestial coordinate system and the telescope coordinate system and derive a transformation matrix through the obtained coordinate. We use recursive least square method to estimate the unknown parameters of a transformation matrix. Finally, we implement a telescope control system using a microprocessor and verify the performance of the correction method. Through an experiment, we show the validity of the proposed correction method.
As a continuing effort to develop an automatic control system for small telescope, we developed the software for telescope control and CCD observations under DOS operating system. For accurate pointing of the telescope in short amount of time, we modelled the angular speed of the telescope by aquadratic function of time (constant acceleration) for the first 15 second and then linear function of time (zero acceleration) aftwewards. By changing the telescope speed from 'slew' to 'fine' before the telescope reaches the desired position, we could achieve the accuracy of a few arcsecond. The CCD control software was written for model CCD-10 of CCD Technology. This CCD can be used for guiding purposes. We also conducted the study for remote control of the telescope using telephone line. Although it cannot be used for real observations at the present form, we succeded in remotely pointing the telescope to desired direction. As faster communication technologies become widely available, simple observations can be made remotely in the near future. Finally we report some observational results made with the present control system.
Korea Astronomy Observatory(KAO) is working to retrofit its 1m robotic telescope in collaboration with a company (ACE, Astronomical Consultants & Equipment). The telescope system is being totally refurbished to make a fully automatic telescope which can operate in both interactive and fully autonomous robotic modes. Progress has been made in design and manufacturing of the telescope mount, mechanics, and optical performance system tests are being made for re-configured primary and secondary mirrors. The optical system is designed to collect 80% incident light within 0.5 arcsec with f/7.5 Ritchey-Chretien design. The telescope mount is an equatorial fork with a friction drive system. The design allows fully programmable tracking speeds with typical range of 15 arcsec/sec with accuracy of $\pm5$ arcsec/hour. The mount system has integral pointing model software to correct for refraction, and all mechanical errors and misalignments. The pointing model will permit positioning to better than 30 arcsec RMS within $75^{\circ}$ from zenith and 45 arcsec RMS elsewhere on the sky. The software is designed for interactive, remote and robotic modes of operation. In interactive and remote mode the user can manually enter coordinates or retrieve them from a computer file. In robotic mode the telescope controller downloads the coordinates in the order determined by the scheduler. The telescope will be equipped with a CCD camera and will be accessible via the internet.
Even though 30inch optical telescope at Kyung Hee Astronomy Observatory has been used to produce a series of scientific achievements since its first light in 1992, numerous difficulties in operating of the telescope have hindered the precise observations needed for further researches. Since the currently used PC-TCS(Personal Computer based Telescope Control System) software based on ISA-bus type is outdated, it doesn't have a user friendly interface and make it impossible to scale. Also accumulated errors which are generated by discordance from input and output signals into a motion controller required new control system. Thus we have improved the telescope control system by updating software and modifying mechanical parts. We applied a new BLDC(brushless DC) servo motor system to the mechanical parts of the telescope and developed a control software using Visual Basic6.0. As a result, we could achieve a high accuracy in controlling of the telescope and use the user friendly GUI(Graphic User Interface).
The Giant Magellan Telescope Organization (GMTO) is developing the GMT Software Development Kit (SDK) for the Observatory Control System (OCS). The SDK models a subsystem of the GMT using a Domain Specific Language (DSL) which can generate a skeleton code and validates the availability of the model automatically. The OCS includes a Device Control System (DCS) and all the devices are connected with the DCS via EtherCAT. The DCS has a component (Hardware Adapter) to communicate with EtherCAT slaves. In this presentation, we demonstrate the modeling process and describe the importance and usage plan of the SDK.
Maemi Dual Field Telescope System (MDFTS) is a dual telescope system located at Kyung Hee University. The system consists of 0.4 m telescope and 0.1 m telescope for wide-field observation. The 0.4 m telescope provides photometric observation which covers a field of view of 21'×16'. It has been used for various purposes with Johnson-Cousins UBVRI broadband filter system, e.g., SomangNet and Intensive Monitoring Survey of Nearby Galaxies. In this poster, we present the standard calibration result for our broadband filter system. Also, we suggest a new usage of the KHAO 0.4m telescope which is narrowband photometry by demonstrating the standard calibration of H-alpha filter. For flux calibration, not only R filter but also V filter is used for compensating the central wavelength discrepancy between R filter and H-alpha filter.
To design three-mirror telescope system (F/8, 120 inch in focal length) for visible and infra-red band imaging, methods for power configuring and correction of the third order aberrations were studied. In the design of the telescope system, a three-mirror system corrected for spherical aberration, coma, and astigmatism was used for infra-red imaging, and the aberrations were corrected by using conic surfaces. For visible imaging, a singlet corrector lens was appended at the front of the focal plane to correct filed curvature. The telescope system has diffraction limited performance for 10 ${\mu}{\textrm}{m}$ in wavelength within 2.4$^{\circ}$ of field-of-view. In the visible band imaging, the rms spot size of the telescope system is less than 25 ${\mu}{\textrm}{m}$ within 3$^{\circ}$ of field-of-view for monochromatic light, and the telescope system satisfies flat field condition for CCD application.
As the first step of the real time monitoring system of the solar radio disturbance, we constructed the control system of the solar radio telescope. An 1.8m antenna built by Korean Astronomy Observatory has been used, and the observed radio flux is transformed to the digital signal by the powermeter. We have also developed a computer program CBNUART in order to control the telescope system and the powermeter. As the sun rises, the telescope begins to observe the sun, and ends the observation automatically at sunset. The CBNUART enables the telescope automatically to go to the position of the sunrise for the beginning the observation and come back to the setposition after the ending the observation at the sunset. An active tracking routine is adopted in order to improve the tracking accuracy of the control system, and we used an optical telescope equipped in front of the antenna for control test. The tracking test shows that our control system can track with the accuracy of arc seconds, and the 50 minute pointing test shows that the pointing accuracy of right ascension and declination are 1.12 and 0.08 arc minutes respectively.
We propose the development and test result of new optical axis alignment system for the interchangeable F/8 secondary mirror of the BOAO 1.8m telescope system. Since the original system was not equipped with a suitable optical alignment facility, the whole alignment process was performed by hand. It was necessary at least three persons working more than 2 nights and the altitude of the telescope could not exceed 10 degrees, in such altitude the alignment quality was not so good by atmospheric effect. The new system adopts position readable motorized system and remote control operation by the computer installed in observation room, which reduces the number of workers to only one and eliminates the altitude restriction. The defocused CCD image pair obtained at higher altitude makes the aberration estimates more accurately and the number of required alignment loops is reduced from 10 to 4. The system has been installed on September 1, and performed alignment three times. The test results show that the system is stable and accurate, gives better optical performance of the telescope under F/8 focus. We hope to emphasize the fact that the new system will increase observation time of the telescope by about 20 nights per year assuming one alignment in every month.
In this paper we describe MS-TCS, the telescope control system which was developed in Korea Astronomy Observatory. MS-TCS can control an equatorial type telescope equipped with stepping motors and incremental type optical encoders. MS-TCS consists of (1) POINT_TEL which is the program roning in a PC and (2) TCS-196 which is the electroics board to control the telescope. The communication between the PC and TCS-l96 is done through RS-232 or RS-422 serial line. MS-TCS can control the secondary mirror and dome. It also provide network function using TCP/IP for remote control of the telescope. MS-TCS is suitable for controlling medium to small size telescope for research and education.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.