• Title/Summary/Keyword: Telecommunication band

Search Result 336, Processing Time 0.025 seconds

Design and Implementation of the GHz-Band Wide (2~18 GHz) Linear Equalizer

  • Kahng, Sung-Tek;Ju, Jeong-Ho;Moon, Won-Gyu
    • Journal of electromagnetic engineering and science
    • /
    • v.7 no.1
    • /
    • pp.42-46
    • /
    • 2007
  • This paper presents a linear amplitude equalizer developed to secure the linearity of the slope of the amplitude over the frequency band ranging $2\sim18\;GHz$. The circuit model is featured by the resistor placed between each pair of a transmission-line and a stub. The design includes finding the values of resistors and stubs to have the optimal linear slope and return loss performances. The measured data show the acceptable performances of the slope variation and return loss over $2\sim18\;GHz$.

A Design of Dual Band LNA for RFID Reader Using LC-tank Matching Circuit (LC-Tank 매칭 회로를 적용한 RFID 리더용 이중대역 저잡음 증폭기 설계)

  • Lee, Je-Kwang;Go, Jae-Hyeong;Kim, Koon-Tae;Kim, Hyeong-Seok
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.9 no.4
    • /
    • pp.153-157
    • /
    • 2010
  • In this paper, a dual band LNA (Low Noise Amplifier) with a LC-tank matching circuit is designed for 912MHz and 2.45GHz RFID reader. The operating frequency is decided by the LC-tank resonance. The simulated results demonstrate that S21 parameter is 11.683dB and 5.748dB at 912MHz and 2.45GHz, respectively, and the S11 are -10.796dB and -21.261dB, the S22 are -7.131dB and -14.877dB at the same frequencies. The measured NF (Noise Figure) is 0.471 and 1.726 at 912MHz and 2.45GHz, respectively.

  • PDF

A Low Power GaAs MMIC Multi-Function Chip for an X-Band Active Phased Array Radar System (X-대역 능동 위상 배열 레이더시스템용 저전력 GaAs MMIC 다기능 칩)

  • Jeong, Jin-Cheol;Shin, Dong-Hwan;Ju, In-Kwon;Yom, In-Bok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.5
    • /
    • pp.504-514
    • /
    • 2014
  • An MMIC multi-function chip with a low DC power consumption for an X-band active phased array radar system has been designed and fabricated using a 0.5 ${\mu}m$ GaAs p-HEMT commercial process. The multi-function chip provides several functions: 6-bit phase shifting, 6-bit attenuation, transmit/receive switching, and signal amplification. The fabricated multi-function chip with a compact size of $16mm^2(4mm{\times}4mm)$ exhibits a gain of 10 dB and a P1dB of 14 dBm from 7 GHz to 11 GHz with a DC low power consumption of only 0.6 W. The RMS(Root Mean Square) errors for the 64 states of the 6-bit phase shift and attenuation were measured to $3^{\circ}$ and 0.6 dB, respectively over the frequency.

Quantum Interference Experiments with Frequency Entangled Photon Pairs at 1.5 ㎛ Telecommunication Band (1.5 ㎛ 통신파장대역 진동수 얽힘 광자쌍의 양자간섭)

  • Kim, Heon-Oh;Kim, Yong-Soo;Youn, Chun-Ju;Cho, Seok-Beom
    • Korean Journal of Optics and Photonics
    • /
    • v.22 no.6
    • /
    • pp.276-282
    • /
    • 2011
  • We performed experiments on Hong-Ou-Mandel type two-photon interference with frequency entangled photon pairs at 1.5 ${\mu}m$ telecommunication band generated through femtosecond pulsed spontaneous parametric down-conversion. Two different angular frequencies ${\omega}_1$ and ${\omega}_2$ were selected using CWDM(coarse wavelength division multiplexing) filters at the output ports of the interferometer. The coincidence counting rates were measured with varying path-length difference between the two interferometer arms to observe the two-photon interference patterns of spatial beating. The obtained visibilities in the net coincidence were close to the theoretical limit of 100%.

Design of a Dual Band High PAE Power Amplifier using Single FET and CRLH-TL (Single FET와 CRLH 전송선을 이용한 이중대역 고효율 전력증폭기 설계)

  • Kim, Seon-Sook;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.56-61
    • /
    • 2010
  • In this paper, high efficient power amplifier with dual band has been realized. Dual band power amplifier have used modify stub matching for single FET, center frequency 2.14GHz and 5.2GHz respectively. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of the all harmonic components is very difficult m dual-band, we have managed only the second- and third-harmonics to obtain the high efficiency with the CRLH TL in dual-band. Dual-band characteristics in the output has to balance. Two operating frequencies are chosen at 2.14 GHz and 5.2 GHz in this work. The measured results show that the output power of 28.56 dBm and 29 dBm was obtained at 2.14 GHz and 5.2 GHz, respectively. At this point, we have obtained the power-added efficiency (PAE) of 65.824 % and 69.86 % at two operation frequencies, respectively.

A Design of High Temperature Superconducting Low-Pass Filter for Broad-Band Harmonic Rejection (광대역 고조파 제거용 고온초전도 저역통과 필터의 설계)

  • Kwak, Min-Hwan;Kim, Sang-Hyun;Ahn, Dal;Han, Seok-Kil;Kang, Kwang-Yong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.78-81
    • /
    • 2000
  • A new type low-pass filter design method based on a coupled line and transmission line theory is proposed to suppress harmonics by attenuation poles in the stop band The design formula are derived using the equivalent circuit of a coupled transmission line. The new low-pass filter structure is shown to have attractive properties such as compact size, wide stop band range and low insertion loss. The seventh-order low-pass filter designed by present method Ins a cutoff frequency of 0.9 GHz with a 0.01 dB ripple level. The coupled line type low-pass filter with stripline configuration was fabricated by using a high-temperature superconducting (HTS ; $YBa_2Cu_3O_{7-x}$) thin film on MgO(100) substrate. Since the HTS coupled line type low-pass filter was proposed with five attenuation poles in stop band such as 1.8, 2.5, 4, 5.5, 62 GHz. The fabricated low-pass filter has improved the attenuation characteristics up to seven times of the cutoff frequency Bemuse of good rejection of the spurious signals and harmonics, our low-pass filter is applicable to mobile base station systems such as cellular, personal communication systems and international mobile telecommunication(IMT)-2000 systems.

  • PDF

Dual band microstrip patch antenna for RFID application of 900MHz and 2.45GHz (900MHz, 2.45GHz RFID 이중 대역 마이크로스트립 패치 안테나)

  • Jang, Se-Wook;Kazemipour, Alireza;Kim, Hyeong-Seok
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.432-435
    • /
    • 2007
  • In this paper, a dual band microstrip patch Antenna is designed for RFID Application. The antenna shows a good performance at the frequencies, 900MHz and 2.45GHz for the radiation characteristics and input impedance matching, as well. The reflection factor is lower than -25dB and a good directivity higher than 5dB is achieved for both frequency.

  • PDF

Design of a Dual Band High PAE Power Amplifier using Single FET and Class-F (Single FET와 Class-F급을 이용한 이중대역 고효율 전력증폭기 설계)

  • Kim, Seon-Sook;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.1
    • /
    • pp.110-114
    • /
    • 2008
  • In this paper, high efficient class F power amplifier with dual band has been realized. Dual band power amplifier have used modify stub matching for single FET, center frequency 2.14GHz and 5.2GHz respectively. Dual band amplifier is 32.65dBm output power, gain 11dB and PAE 36% at the 2.14GHz, 7dB gain at the 5.2GHz. Design of a dual band class F power amplifier using harmonic control circuit. The measured are 9.9dB gain, 30dBm output power and PAE 55% at the 2.14GHz, 11.7dB gain at the 5.2GHz. This paper is being used the load-pull method and it maximizes output power and it is using the only one transistor in the paper. As a result, this research will obtain a dual band high PAE power amplifier.

Dual-Band Class F Power Amplifier using CRLH-TLs for Multi-Band Antenna System (다중밴드 안테나 시스템을 위한 CRLH 전송선로를 이용한 이중대역 Class F 전력증폭기)

  • Kim, Sun-Young;Seo, Chul-Hun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.45 no.12
    • /
    • pp.7-12
    • /
    • 2008
  • In this paper, a highly efficiency power amplifier is presented for multi-band antenna system. The class F power amplifier operating in dual-band designed with one LDMOSFET. An operating frequency of power amplifier is 900 MHz and 2.14 GHz respectively Matching networks and harmonic control circuits of amplifier are designed by using the unit cell of composite right/left-handed(CRLH) transmission line(TL) realized with lumped elements. The CRLH TL can lead to metamaterial transmission line with the dual-band holing capability. The dual-band operation of the CRLH TL is achieved by the frequency offset and the nonlinear phase slope of the CRLH TL for the matching network of the power amplifier. Because the control of all harmonic components for high efficiency is very difficult, we have controled only the second- and third-harmonics to obtain the high efficiency with the CRLH TL. Also, the proposed power amplifier has been realized by using the harmonic control circuit for not only the output matching network, but also the input matching network for better efficiency.

Design, Fabrication and Measurement of a Compact, Frequency Reconfigurable, Modified T-shape Planar Antenna for Portable Applications

  • Iqbal, Amjad;Ullah, Sadiq;Naeem, Umair;Basir, Abdul;Ali, Usman
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1611-1618
    • /
    • 2017
  • This paper presents a compact reconfigurable printed monopole antenna, operating in three different frequency bands (2.45 GHz, 3 GHz and 5.2 GHz), depending upon the state of the lumped element switch. The proposed multiband reconfigurable antenna is designed and fabricated on a 1.6 mm thicker FR-4 substrate having a relative permittivity of 4.4. When the switch is turned ON, the antenna operates in a dual band frequency mode, i.e. WiFi at 2.45 GHz (2.06-3.14 GHz) and WLAN at 5.4 GHz (5.11-5.66 GHz). When the switch is turned OFF, it operates only at 3 GHz (2.44-3.66 GHz). The antenna radiates omni-directionally in these bands with an adequate, bandwidth (>10 %), efficiency (>90 %), gain (>1.2 dB), directivity (>1.7 dBi) and VSWR (<2). The fabricated antenna is tested in the laboratory to validate the simulated results. The antenna, due to its reasonably compact size ($39{\times}37mm^2$), can be used in portable devices such as laptops and iPads.