• Title/Summary/Keyword: Teflon Coated Tube

Search Result 3, Processing Time 0.025 seconds

Experimental Study on the Characteristics of Heat and Mass Transfer on the Teflon Coated Tubes (테프론 코팅 전열관 표면으로의 열 및 물질 전달 특성에 관한 실험적 연구)

  • Lee, Jang-Ho;Kim, Hyeong-Dae;Kim, Jung-Bae;Kim, Moo-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.8
    • /
    • pp.1051-1060
    • /
    • 2003
  • The heat and mass transfer on two kinds of tube surfaces (bare stainless steel tube and Teflon coated tube) in steam-air mixture flow are experimentally studied to obtain design data for the heat exchanger of the latent heat recovery from flue gas. In the test section, 3-tubes are horizontally installed, and steam-air mixture is vertically flowed from the top to the bottom. The pitch between tubes is 67mm, the out-diameter of tube is 25.4mm, and the thickness is 1.2mm ; blockage factor (cross sectional tube area over the cross sectional area of the test section) is about 0.38. All of sensors and measurement systems (RTD, pressure sensor, flow-meter, relative humidity sensor, etc.) are calibrated with certificated standard sensors and the uncertainty for the heat transfer measurement is surveyed to have the uncertainty within 7%. As experimental results, overall heat transfer coefficient of the Teflon (FEP) coated tube is degraded about 20% compared to bare stainless tube. The degradation of overall heat transfer coefficient of Teflon coated tube comes from the additional heat transfer resistance due to Teflon coating. Its magnitude of heat transfer resistance is comparable to the in-tube heat transfer resistance. Nusselt and Sherwood numbers on Teflon (FEP) coated surface and bare stainless steel surface are discussed in detail with the contact angles of the condensate.

Characteristics of Heat Recovery Rate and Fouling according to Structures and Materials in Heat Exchangers (열교환장치의 구조 및 재질에 따른 열회수율과 파울링의 발생 특성)

  • Kim, Hyun-Sang;Kim, Yong-Gu;Bong, Choon-Keun;Lee, Myong-Hwa
    • Resources Recycling
    • /
    • v.24 no.2
    • /
    • pp.3-12
    • /
    • 2015
  • We researched characteristics of heat recovery rate and fouling according to structures and materials in heat exchangers like water preheater and air preheater. Economizer and air preheater have used in thermal electric power plant. we made small incinerator and heat exchangers to carry out simulated experiment. We observed fouling formation and change of heat recovery rate, combusting powdered coal for 24 hr. In economizer, fin tube type had the largest amount of fouling formation, followed by tube line type > pipe type > auto washing type according to structures. As heat recovery rate, fin tube showed highest recovery rate, followed by auto washing type > pipe type > tube line type. In air preheater, fin tube type had the largest amount of fouling formation, followed by fin plate type > pipe type > pipe type coated by teflon > pipe type coated by ceramic according to structures. And then, heat recovery rate showed the same oder.

Determination of the Trace Elements in $UO_2$ Powder by ICP-AES Directyl Coupled with Extraction Chromatography (추출크로마토그래피와 유도결합플라스마 원자방출분광법을 이용한 이산화우라늄분말 중 미량금속불순물 분석)

  • Choi, Kwang-Soon;Lee, Chang-Heon;Pyo, Hyung-Yeal;Han, Sun-Ho;Suh, Moo-Yul;Eom, Tae-Yoon;Lee, Gae-Ho
    • Journal of the Korean Chemical Society
    • /
    • v.37 no.9
    • /
    • pp.813-819
    • /
    • 1993
  • An ICP-AES system directly connected with a separation column was used in order to determine the trace elements in $UO_2$ powder promptly and reduce the volume of the waste solution. The outlet of a separation column, which was filled with Teflon powder ($330\;{\mu}m$) coated with tri-n-butyl phosphate (TBP) as extractant, was directly connected with sample injection tube of ICP-AES. Eleven elements including molybdenum in $UO_2$ powder were separated and determined simultaneously. Recoveries of these elements were $91{\sim}110%$ and these results were agreed with those of solvent extraction methods. This method was applicable to quality control in manufacturing nuclear fuel.

  • PDF