• Title/Summary/Keyword: Tee extrusion

Search Result 5, Processing Time 0.023 seconds

Finite Element Analysis of TEE Forming for HDPE Pipe (HDPE 관의 TEE 성형에 대한 유한요소해석)

  • Wang Chang-Bum;Song Doo-Ho;Park Yong-Bok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.298-307
    • /
    • 2006
  • TEE Forming process for HDPE(High Density PolyEthylen) pipe has been analyzed by using rigid plastic finite element code, DEFORM-3D. TEE of HDPE pipes is necessary to connect main pipe with branch pipe and change the flow direction of hot water. A HDPE pipe is used as a insulator to maintain the temperature of hot water A butt welding process through TEE forming for a HDPE pipe is a updated process improving the strength of welding part compared to conventional extrusion welding process. The Experiment of Hot and Cold Forming have been performed. The design parameters such as a initial hole shape have been obtained through rigid-plastic finite element analysis, which is applied to the actual manufacturing process.

  • PDF

Rigid-Plastic Finite Element Approach to Hydroforming Process and Its Application (하이드로 포밍 성형공정 해석을 위한 강소성 유한요소 프로그램 개발 및 적용)

  • 강범수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.4
    • /
    • pp.22-28
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit for two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral i is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

Prediction of Forming Limit in Hydroforming Processes by Using Finite Element Method and Ductile Fracture Criterion (연성파괴모델의 유한요소법을 이용한 하이드로포밍공정에의 성형한계 예측)

  • Kim, Dae-Hwan;Lei, Li-Ping;Kang, Beom-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.230-235
    • /
    • 2000
  • By using the finite element method, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of hydroforming process could be evaluated. The fracture initiation site and the forming limit fer two typical hydroforming processes, tee extrusion and bumper rail under different forming conditions are predicted in this study. For tee extrusion hydroforming process, the pressure level has significant influence on the forming limit. When the expansion area is backed by a supporter and bulged, the process would be more stable and the possibility of bursting failure is reduced. For bumper rail, the ductile fracture integral I is not only affected by the process parameters, but also by the shape of preforming blank. Due to no axial feeding on the end side of the blank, the possibility of cracking in hydroforming of the bumper rail is influenced by the friction condition more strongly than that of the tee extrusion. All the simulation results show reasonable plastic deformation, and the applications of the method could be extended to a wide range of hydroforming processes.

  • PDF

Bursting Failure Prediction in Tube Hydroforming Process (튜브 액압성형 공정에서의 터짐 현상 예측)

  • Kim, Jeong;Lei, Liping;Kang, Sung-Jong;Kang, Beom-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.9 no.6
    • /
    • pp.160-169
    • /
    • 2001
  • To predict busting failure in tubular hydroforming, the criteria for ductile fracture proposed by Oyane is combined with the finite element method. From the histories of stress and strain in each element obtained from finite element analysis, the fracture initiation site is predicted by mean of the criterion. The prediction by the ductile fracture criterion is applied to three hydroforming processes such as a tee extrusion, an automobile rear axle housing and lower am. For these products, the ductile fracture integral I is not only affected by the process parameters, but also by preforming processes. All the simulation results show the combination of the finite element analysis and the ductile fracture criteria is useful in the prediction of farming limit in hydroforming processes.

  • PDF

Analysis of Hydroforming Process and Forming Limit Prediction by FEM (유한요소법을 적용한 하이드로포밍 공정 해석 및 성형한계 예측)

  • Kim J.;Kang S. J.;Kang B. S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.05a
    • /
    • pp.36-39
    • /
    • 2001
  • Tubular hydroforming has attracted increased attention in the automotive industry recently. In this study, a professional finite element program for analysis and design of tube hydroforming processes has been developed, called HydroFORM-3D, which is based on a rigid-plastic model. With the developed program several hydroforming processes such as a tee extrusion, an automotive rear axle housing and lower arm are analyzed and designed. And also, the Oyane's ductile fracture integral I was calculated from the histories of stress and strain according to every element and then the forming limit of the hydroforming process could be evaluated. The pediction of the bursting failure and the plastic deformation during typical hydroforming processes shows to be reasonable so that this approach can be extended to other various tube hydroforming processes.

  • PDF