• Title/Summary/Keyword: Technology classification

Search Result 4,104, Processing Time 0.029 seconds

Recommendation System for Research Field of R&D Project Using Machine Learning (머신러닝을 이용한 R&D과제의 연구분야 추천 서비스)

  • Kim, Yunjeong;Shin, Donggu;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.12
    • /
    • pp.1809-1816
    • /
    • 2021
  • In order to identify the latest research trends using data related to national R&D projects and to produce and utilize meaningful information, the application of automatic classification technology was also required in the national R&D information service, so we conducted research to automatically classify and recommend research field. About 450,000 cases of national R&D project data from 2013 to 2020 were collected and used for learning and evaluation. A model was selected after data pre-processing, analysis, and performance analysis for valid data among collected data. The performance of Word2vec, GloVe, and fastText was compared for the purpose of deriving the optimal model combination. As a result of the experiment, the accuracy of only the subcategories used as essential items of task information is 90.11%. This model is expected to be applicable to the automatic classification study of other classification systems with a hierarchical structure similar to that of the national science and technology standard classification research field.

Object Classification List for BIM-based Maintenance Information Modeling in Electrical and Telecommunications Field of Architecture (BIM 기반 유지관리정보 모델링을 위한 객체분류목록 개발 -건축 전기/정보통신 분야를 중심으로-)

  • Song, Jong-Kwan;Cho, Gen-Ha;Won, Ji-Sun;Ju, Ki-Beom;Bea, Si-Hwa
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.5
    • /
    • pp.3183-3191
    • /
    • 2014
  • It is essential to effectively manage facilities because operating and maintenance cost for them accounts for more than 83% of lifecycle cost. This study developed BIM Object-based classification list to manage information required to operating and maintenance phase of them from design and construction phase. In order to develop this classification list, Construction Information Classification System, Design Criteria for Architectural Electrical Installations, commodity list classification of PPS(Public Procurement Service) were analyzed. and problems for consisting of object classification list were drawn. And each materials is classified that drawings discipline code (KSF 1540:2010 (Principle and criteria for CAD Drawing) was classified as level 1 to cover main areas and construction information classification system was classified as level 2 to cover elements also UNSPSC was classified as level 3 to cover objects for devices and equipments. this classification criteria was given code. This study is expected to be useful to exchange and share information in operating and maintenance phase by offering object point of view classification in design and construction phase. besides, it is looking forward to effective operating and maintenance of facilities by enabling management of devices and equipments by function, space, use.

Research on Text Classification of Research Reports using Korea National Science and Technology Standards Classification Codes (국가 과학기술 표준분류 체계 기반 연구보고서 문서의 자동 분류 연구)

  • Choi, Jong-Yun;Hahn, Hyuk;Jung, Yuchul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.169-177
    • /
    • 2020
  • In South Korea, the results of R&D in science and technology are submitted to the National Science and Technology Information Service (NTIS) in reports that have Korea national science and technology standard classification codes (K-NSCC). However, considering there are more than 2000 sub-categories, it is non-trivial to choose correct classification codes without a clear understanding of the K-NSCC. In addition, there are few cases of automatic document classification research based on the K-NSCC, and there are no training data in the public domain. To the best of our knowledge, this study is the first attempt to build a highly performing K-NSCC classification system based on NTIS report meta-information from the last five years (2013-2017). To this end, about 210 mid-level categories were selected, and we conducted preprocessing considering the characteristics of research report metadata. More specifically, we propose a convolutional neural network (CNN) technique using only task names and keywords, which are the most influential fields. The proposed model is compared with several machine learning methods (e.g., the linear support vector classifier, CNN, gated recurrent unit, etc.) that show good performance in text classification, and that have a performance advantage of 1% to 7% based on a top-three F1 score.

Automated Link Tracing for Classification of Malicious Websites in Malware Distribution Networks

  • Choi, Sang-Yong;Lim, Chang Gyoon;Kim, Yong-Min
    • Journal of Information Processing Systems
    • /
    • v.15 no.1
    • /
    • pp.100-115
    • /
    • 2019
  • Malicious code distribution on the Internet is one of the most critical Internet-based threats and distribution technology has evolved to bypass detection systems. As a new defense against the detection bypass technology of malicious attackers, this study proposes the automated tracing of malicious websites in a malware distribution network (MDN). The proposed technology extracts automated links and classifies websites into malicious and normal websites based on link structure. Even if attackers use a new distribution technology, website classification is possible as long as the connections are established through automated links. The use of a real web-browser and proxy server enables an adequate response to attackers' perception of analysis environments and evasion technology and prevents analysis environments from being infected by malicious code. The validity and accuracy of the proposed method for classification are verified using 20,000 links, 10,000 each from normal and malicious websites.

Hierarchical classification of Fingerprints using Discrete Wavelet Transform (이산 웨이블릿 변환을 이용한 지문의 계층적 분류)

  • Kwon, Yong-Ho;Lee, Jung-Moon
    • Journal of Industrial Technology
    • /
    • v.19
    • /
    • pp.403-408
    • /
    • 1999
  • An efficient method is developed for classifying fingerprint data based on 2-D discrete wavelet transform. Fingerprint data is first converted to a binary image. Then a multi-level 2-D wavelet transform is performed. Vertical and horizontal subbands of the transformed data show typical energy distribution patterns relevant to the fingerprint categories. The proposed method with moderate level of wavelet transform is successful in classifying fingerprints into 5 different types. Finer classification is possible by higher frequency subbands and closer analysis of energy distribution.

  • PDF

Opinion Extraction based on Syntactic Pieces

  • Aoki, Suguru;Yamamoto, Kazuhide
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2007.11a
    • /
    • pp.76-85
    • /
    • 2007
  • This paper addresses a task of opinion extraction from given documents and its positive/negative classification. We propose a sentence classification method using a notion of syntactic piece. Syntactic piece is a minimum unit of structure, and is used as an alternative processing unit of n-gram and whole tree structure. We compute its semantic orientation, and classify opinion sentences into positive or negative. We have conducted an experiment on more than 5000 opinion sentences of multiple domains, and have proven that our approach attains high performance at 91% precision.

  • PDF

Environmental Sensor Selection : classification and its applications

  • Rhee, In-Hyoung;Cho, Daechul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.5 no.1
    • /
    • pp.87-92
    • /
    • 2004
  • This review focuses on the developed and the being developed environmental sensors in particular biological sensors. As well as discussing the classification and some main principles, presenting current trend of the environmental sensors is given. Two main categories are immunosensors and catalytic sensors. In addition to those. DNA or RNA sensors or protein based sensors are discussed. Some crucial examples of the applications of such sensors are given to show how the sensor technology it used for environmental and biological monitoring, biomarkers of exposure.

  • PDF

On the Design Impact Pressure in the Rules and Regulations of ISO and Classification Societies (선급 및 ISO에 나타난 설계충격 하중에 관하여)

  • Lee, June
    • Journal of Korea Ship Safrty Technology Authority
    • /
    • s.31
    • /
    • pp.60-70
    • /
    • 2011
  • The slamming impact pressures at the bottom area of the Open60' are evaluated by the rules and regulations of various organizations - ISO and classification societies. The enhanced performance of the modern racing yacht in terms of speed which achieves well over 20 knots needs special consideration. The calculated design impact pressures are compared a experimental results. Severe difference can be found in these calculation results but the final conclusion shall be obtained after the scantling calculation under the evaluated design impact pressure so far.

  • PDF

The Basic Concepts Classification as a Bottom-Up Strategy for the Semantic Web

  • Szostak, Rick
    • International Journal of Knowledge Content Development & Technology
    • /
    • v.4 no.1
    • /
    • pp.39-51
    • /
    • 2014
  • The paper proposes that the Basic Concepts Classification (BCC) could serve as the controlled vocabulary for the Semantic Web. The BCC uses a synthetic approach among classes of things, relators, and properties. These are precisely the sort of concepts required by RDF triples. The BCC also addresses some of the syntactic needs of the Semantic Web. Others could be added to the BCC in a bottom-up process that carefully evaluates the costs, benefits, and best format for each rule considered.

Image Classification Using Convolutional Neural Networks Considering Category Hierarchies (카테고리 계층을 고려한 회선신경망의 이미지 분류)

  • Jeong, Nokwon;Cho, Soosun
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1417-1424
    • /
    • 2018
  • In order to improve the performance of image classifications using Convolutional Neural Networks (CNN), applying a category hierarchy to the classification can be a useful idea. However, the visual separation of object categories is very different according to the upper and lower category levels and highly uneven in image classifications. Therefore, it is doubtable whether the use of category hierarchies for classification is effective in CNN. In this paper, we have clarified whether the image classification using category hierarchies improves classification performance, and found at which level of hierarchy classification is more effective. For experiments we divided the image classification task according to the upper and lower category levels and assigned image data to each CNN model. We identified and compared the results of three classification models and analyzed them. Through the experiments, we could confirm that classification effectiveness was not improved by reduction of number of categories in a classification model. And we found that only with the re-training method in the last network layer, the performance of lower category classification was not improved although that of higher category classification was improved.