• Title/Summary/Keyword: Technology Transfer System

Search Result 2,290, Processing Time 0.033 seconds

The Experimental Study on the Heat Transfer Characteristics of Ice Slurry Generator Using Air Cylinder (공압구동형 제빙기의 열전달 특성에 관한 실험적 고찰)

  • Kim, Min-Jun;Kim, Joung-Ha;Yun, Jae-Ho;Park, Il-Hwan;Lee, Kyu-Chil
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.19 no.11
    • /
    • pp.743-750
    • /
    • 2007
  • In this study, ice slurry generator using air cylinder was designed and manufactured to investigate the heat transfer characteristic of the ice slurry generator. The ice slurry generator has the same shape as the shell-and-tube type heat exchanger. Refrigerant is flowing in the shell side and ethylene glycol solution in the tube side. The experiment was conducted on performance of ice slurry generator using air cylinder with standard condition and the results are plotted on the time scale. The experimental tests on the various concentration of ethylene glycol solution, the various solution velocity in the tube side and the various tube size have been carried. For the above experimental conditions, ice making characteristics of the ice slurry generator are evaluated in terms of the overall heat transfer coefficient. And the experimental results show that the overall heat transfer coefficient of the system is increased as the tube size and the concentration of ethylene glycol decreases.

A Novel IPT System Based on Dual Coupled Primary Tracks for High Power Applications

  • Li, Yong;Mai, Ruikun;Lu, Liwen;He, Zhengyou
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.111-120
    • /
    • 2016
  • Generally, a single phase H-bridge converter feeding a single primary track is employed in conventional inductive power transfer systems. However, these systems may not be suitable for some high power applications due to the constraints of the semiconductor switches and the cost. To resolve this problem, a novel dual coupled primary tracks IPT system consisting of two high frequency resonant inverters feeding the tracks is presented in this paper. The primary tracks are wound around an E-shape ferrite core in parallel which enhances the magnetic flux around the tracks. The mutual inductance of the coupled tracks is utilized to achieve adjustable power sharing between the inverters by configuring the additional resonant capacitors. The total transfer power can be continuously regulated by altering the pulse width of the inverters' output voltage with the phase shift control approach. In addition, the system's efficiency and the control strategy are provided to analyze the characteristic of the proposed IPT system. An experimental setup with total power of 1.4kW is employed to verify the proposed system under power ratios of 1:1 and 1:2 with a transfer efficiency up to 88.7%. The results verify the performance of the proposed system.

Technology Transfer and the Technomart Related Laws (데크노마트와 지원법 제도)

  • 이영덕;강병수
    • Journal of Korea Technology Innovation Society
    • /
    • v.2 no.2
    • /
    • pp.233-248
    • /
    • 1999
  • For the last several decades, it has been recognized that technology is a key factor in becoming an ADC and an advanced firm. So many countries and individual firms have been increasing investments on technology development. Especially LDCs including Korea choose technology transfer and transaction as an important alternative of their own technology development. To activate technology transaction and transfer, it is necessary to establish an technology transaction system, namely a Technomart that will make good connections between technology suppliers and technology buyers, and efficient functional linkages of supporting infrastructures including organizations and laws related with technology transactions. Therefore this study reviewed both the characteristics of technology transfer and transaction and a conceptual structure of a Technomart through a literature review. And then, the study analyzed the Technomart related laws including an intellectual property right, a copyright, a patent right, and electric transaction related laws. In conclusion the study proposed the development directions of the Technomart related laws.

  • PDF

Design and characteristic investigations of superconducting wireless power transfer for electric vehicle charging system via resonance coupling method

  • Chung, Y.D.;Yim, Seong Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.3
    • /
    • pp.21-25
    • /
    • 2014
  • As wireless power transfer (WPT) technology using strongly coupled electromagnetic resonators is a recently explored technique to realize the large power delivery and storage without any cable or wire, this technique is required for diffusion of electric vehicles (EVs) since it makes possible a convenient charging system. Typically, since the normal conducting coils are used as a transmitting coil in the CPT system, there is limited to deliver the large power promptly in the contactless EV charging system. From this reason, we proposed the combination CPT technology with HTS transmitting antenna, it is called as, superconducting contactless power transfer for EV (SUWPT4EV) system. As the HTS coil has an enough current density, it can deliver a mass amount of electric energy in spite of a small scale antenna. The SUCPT4EV system has been expected as a noble option to improve the transfer efficiency of large electric power. Such a system consists of two resonator coils; HTS transmitting antenna (Tx) coil and normal conducting receiver (Rx) coil. Especially, the impedance matching for each resonator is a sensitive and plays an important role to improve transfer efficiency as well as delivery distance. In this study, we examined the improvement of transmission efficiency and properties for HTS and copper antennas, respectively, within 45 cm distance. Thus, we obtained improved transfer efficiency with HTS antenna over 15% compared with copper antenna. In addition, we achieved effective impedance matching conditions between HTS antenna and copper receiver at radio frequency (RF) power of 370 kHz.

Developing a technology valuation model and a web-based technology valuation system for promoting the technology transfer (기술이전거래 촉진을 위한 기술가치평가모형 및 웹기반 기술가치평가시스템 개발)

  • Baek, Dong-Hyun;Yoo, Sun-Hi;Jung, Hye-Sun;Sul, Won-Sik;Hong, Kil-Pyo;Kim, Hun
    • Information Systems Review
    • /
    • v.6 no.1
    • /
    • pp.123-139
    • /
    • 2004
  • It is needed to transfer the technology actively which has already developed to improve a up-to-date technology and foster the technological innovation. The technology transfer also can bring about a commercial success. To promote the technology transfer, it is needed to develop a new technology valuation model for a specific technology from a objective point of view, as well as to equip an institution such as the technology transfer center. The technology valuation from a objective point of view is of importance as the basic information for the price negotiation between a technology-buyer and a technology-seller. This paper takes aim at investigating a new technology valuation model and developing a technology valuation system for promoting the technology transfer. A new technology valuation system is developed as a Web-enabling base. Using this users are able to estimate the value of a specific technology on a real time efficiently.

Experimental Study of Evaporative Heat Transfer Characteristics of R-134a with Channel-Bending Angle in Microchannel Heat Exchangers (마이크로채널 열교환기에서 채널 굽힘 각도에 따른 R-134a의 증발열전달 특성에 관한 연구)

  • Lee, Hae-Seung;Jeon, Dong-Soon;Kim, Young-Lyoul;Kim, Seon-Chang
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.635-642
    • /
    • 2010
  • Experimental investigations have been carried out to examine the evaporative heat transfer characteristics of R-134a with the channel-bending angle (CBA) in microchannel heat exchangers. In this study, we examined the effects of evaporation temperature and Reynolds number of R-134a on the evaporative heat transfer characteristics of R-134a in microchannel heat exchangers with CBAs of $120^{\circ}$, $150^{\circ}$, and $180^{\circ}$ under counterflow conditions. Experimental results show that the evaporative heat transfer rate and evaporative heat transfer coefficient increased with an increase in the Reynolds number of R-134a. Further, the evaporative heat transfer rate corresponding to CBAs of $120^{\circ}$ and $150^{\circ}$ increased to values greater than the evaporative heat transfer rate corresponding to $180^{\circ}$ by approximately 17.1% and 13.3%, respectively, for evaporating temperatures in the range $4.9-14.9^{\circ}C$. The evaporative heat transfer coefficient was affected by the channel angle with increasing evaporative heat transfer coefficient at small channel bending angle.

A Feedback Circuit of Effective Wireless Power Transfer for Low Power System

  • Lho, Young Hwan
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.480-483
    • /
    • 2018
  • Wireless power transfer (WPT) is the technology that forces the power to transmit electromagnetic field to an electrical load through an air gap without interconnecting wires. This technology is widely used for the applications from low power smartphone to high power electric railroad. In this paper, the model of wireless power transfer circuit for the low power system is designed for a resonant frequency of 13.45 MHz. Also, a feedback WPT circuit to improve the power transfer efficiency is proposed and shown better performance than the original open WPT circuit, and the methodology for power efficiency improvement is studied as the coupling coefficient increases above 0.01, at which the split frequency is made.

Magnetic Resonant Coupling Based Wireless Power Transfer System with In-Band Communication

  • Kim, Sun-Hee;Lim, Yong-Seok;Lee, Seung-Jun
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.13 no.6
    • /
    • pp.562-568
    • /
    • 2013
  • This paper presents a design of a wireless power transfer system based on magnetic resonant coupling technology with in-band wireless communication. To increase the transmission distance and compensate for the change in the effective capacitance due to the varying distance, the proposed system used a loop antenna with a selectable capacitor array. Because the increased transmission distance enables multiple charging, we added a communication protocol operated at the same frequency band to manage a network and control power circuits. In order to achieve the efficient bandwidth in both power transfer mode and communication mode, the S-parameters of the loop antennas are adjusted by switching a series resistor. Our test results showed that the loop antenna achieved a high Q factor in power transfer mode and enough passband in communication mode.

Contactless Power Charger for Light Electric Vehicles Featuring Active Load Matching

  • Jiang, Wei;Xu, Song;Li, Nailu
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.102-110
    • /
    • 2016
  • Contactless power transfer technology is gaining increasing attention in city transportation applications because of its high mobility and flexibility in charging and its commensurate power level with conductive power transfer method. In this study, an inductively coupled contactless charging system for a 48 V light electric vehicle is proposed. Although this study does not focus on system efficiency, the generic problems in an inductively coupled contactless power transfer system without ferromagnetic structure are discussed. An active load matching method is also proposed to control the power transfer on the receiving side through a load matching converter. Small signal modeling and linear control technology are applied to the load matching converter for port voltage regulation, which effectively controls the power flow into the load. A prototype is built, and experiments are conducted to reveal the intrinsic characteristics of a series-series resonant inductive power charger in terms of frequency, air gap length, power flow control, coil misalignment, and efficiency issues.