• Title/Summary/Keyword: Technology Fusion

Search Result 2,906, Processing Time 0.03 seconds

Comparison of Ethanol Fermentation Properties between Laboratorial and Industrial Yeast Strains using Cassava Hydrolysate (카사바 당화액을 이용한 실험실용 및 산업용 효모의 에탄올 발효성능 비교)

  • Chin, Young-Wook;Kim, Jin-Woo;Park, Yong-Cheol;Seo, Jin-Ho
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.220-225
    • /
    • 2012
  • In order to investigate the ethanol fermentation properties of alcohol yeasts a laboratorial strain (CEN.PK2-1D) and two industrial alcohol yeasts (JHS100 and JHS200) of Saccharomyces cerevisiae were cultured in a pure YP medium with 300 g/L glucose and cassava hydrolysate. Spot assay and cell viability tests showed that both the JHS100 and JHS200 strains exhibited higher ethanol tolerance than the CEN.PK2-1D strain. The JHS100 strain demonstrated the highest cell growth, glucose consumption and ethanol production. In particular, an anaerobic batch fermentation of the JHS100 strain using cassava hydrolysate with 250 g/L glucose resulted in a 106.1 g/L ethanol concentration, 0.42 g/g ethanol yield and 3.15 g/L-hr ethanol productivity, which were 53%, 13%, 53% higher than the corresponding values for the CEN.PK2-1D strain. By changing the pure YP medium to cassava hydrolysate, 19% and 17% decreases in ethanol yield and productivity for the CEN.PK2-1D strain were observed, whereas the cultures of the JHS100 and JHS200 stains showed similar ethanol productivities and only an 8% decrease in ethanol yield. Furthermore, the JHS100 and JHS200 stains produced lower levels of glycerol and acetate byproducts than the CEN.PK2-1D strain. Consequently, the outstanding ethanol fermentation performance of the industrial strains might be owing to rapid cell growth, high ethanol tolerance, low nitrogen requirements and the low formation of by-products.

Performance Characteristics of PM10 and PM2.5 Samplers with an Advanced Chamber System (챔버 기술 개발을 통한 PM10과 PM2.5 시료채취기의 수행 특성)

  • Kim, Do-Hyeon;Kim, Seon-Hong;Kim, Ji-Hoon;Cho, Seung-Yeon;Park, Ju-Myon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.8
    • /
    • pp.739-746
    • /
    • 2010
  • The purposes of this study are 1) to develop an advanced chamber system within ${\pm}10%$ of air velocity at the particulate matter (PM) collection area, 2) to research theoretical characteristics of PM10 and PM2.5 samplers, 3) to assess the performance characteristics of PM10 and PM2.5 samplers through chamber experiments. The total six one-hour experiments were conducted using the cornstarch with an mass median aerodynamic diameter (MMAD) of $20\;{\mu}m$ and an geometric standard deviation of 2.0 at the two different air velocity conditions of 0.67 m/s and 2.15 m/s in the chamber. The aerosol samplers used in the present study are one APM PM10 and one PM2.5 samplers accordance with the US federal reference methods and specially designed three mini-volume aerosol samplers (two for PM10 and one for PM2.5). The overall results indicate that PM10 and PM2.5 mini-volume samplers need correction factors of 0.25 and 0.39 respectively when APM PM samplers considered as reference samplers and there is significant difference between two mini-volume aerosol samplers when a two-way analysis of variance is tested using the measured PM10 mass concentrations. The PM10 and PM2.5 samplers with the cutpoints and slopes (PM10: $10{\pm}0.5\;{\mu}m$ and $1.5{\pm}0.1$, PM2.5: $2.5{\pm}0.2\;{\mu}m$ and $1.3{\pm}0.03$) theoretically collect the ranges of 86~114% and 64~152% considering the cornstarch characteristics used in this research. Furthermore, the calculated mass concentrations of PM samplers are higher than the ideal mass concentrations when the airborne MMADs for the cornstarch used are smaller than the cutpoints of PM samplers and the PM samplers collected less PM in another case. The chamber experiment also showed that PM10 and PM2.5 samplers had the bigger collection ranges of 37~158% and 55~149% than the theocratical calculated mass concentration ranges and the relatively similar mass concentration ranges were measured at the air velocity of 2.15 m/s comparing with the 0.67 m/s.

Development of a High Heat Load Test Facility KoHLT-1 for a Testing of Nuclear Fusion Reactor Components (핵융합로부품 시험을 위한 고열부하 시험시설 KoHLT-1 구축)

  • Bae, Young-Dug;Kim, Suk-Kwon;Lee, Dong-Won;Shin, Hee-Yun;Hong, Bong-Guen
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.4
    • /
    • pp.318-330
    • /
    • 2009
  • A high heat flux test facility using a graphite heating panel was constructed and is presently in operation at Korea Atomic Energy Research Institute, which is called KoHLT-1. Its major purpose is to carry out a thermal cycle test to verify the integrity of a HIP (hot isostatic pressing) bonded Be mockups which were fabricated for developing HIP joining technology to bond different metals, i.e., Be-to-CuCrZr and CuCrZr-to-SS316L, for the ITER (International Thermonuclear Experimental Reactor) first wall. The KoHLT-1 consists of a graphite heating panel, a box-type test chamber with water-cooling jackets, an electrical DC power supply, a water-cooling system, an evacuation system, an He gas system, and some diagnostics, which are equipped in an authorized laboratory with a special ventilation system for the Be treatment. The graphite heater is placed between two mockups, and the gap distance between the heater and the mockup is adjusted to $2{\sim}3\;mm$. We designed and fabricated several graphite heating panels to have various heating areas depending on the tested mockups, and to have the electrical resistances of $0.2{\sim}0.5$ ohms during high temperature operation. The heater is connected to an electrical DC power supply of 100 V/400 A. The heat flux is easily controlled by the pre-programmed control system which consists of a personal computer and a multi function module. The heat fluxes on the two mockups are deduced from the flow rate and the coolant inlet/out temperatures by a calorimetric method. We have carried out the thermal cycle tests of various Be mockups, and the reliability of the KoHLT-1 for long time operation at a high heat flux was verified, and its broad applicability is promising.

Analysis of Co-registration Performance According to Geometric Processing Level of KOMPSAT-3/3A Reference Image (KOMPSAT-3/3A 기준영상의 기하품질에 따른 상호좌표등록 결과 분석)

  • Yun, Yerin;Kim, Taeheon;Oh, Jaehong;Han, Youkyung
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.2
    • /
    • pp.221-232
    • /
    • 2021
  • This study analyzed co-registration results according to the geometric processing level of reference image, which are Level 1R and Level 1G provided from KOMPSAT-3 and KOMPSAT-3A images. We performed co-registration using each Level 1R and Level 1G image as a reference image, and Level 1R image as a sensed image. For constructing the experimental dataset, seven Level 1R and 1G images of KOMPSAT-3 and KOMPSAT-3A acquired from Daejeon, South Korea, were used. To coarsely align the geometric position of the two images, SURF (Speeded-Up Robust Feature) and PC (Phase Correlation) methods were combined and then repeatedly applied to the overlapping region of the images. Then, we extracted tie-points using the SURF method from coarsely aligned images and performed fine co-registration through affine transformation and piecewise Linear transformation, respectively, constructed with the tie-points. As a result of the experiment, when Level 1G image was used as a reference image, a relatively large number of tie-points were extracted than Level 1R image. Also, in the case where the reference image is Level 1G image, the root mean square error of co-registration was 5 pixels less than the case of Level 1R image on average. We have shown from the experimental results that the co-registration performance can be affected by the geometric processing level related to the initial geometric relationship between the two images. Moreover, we confirmed that the better geometric quality of the reference image achieved the more stable co-registration performance.

Production of Lignan-Rich Eggs as Functional Food by Supplementing Schisandra chinensis By-Product in Laying Hens (사료에 오미자 가공부산물 분말의 첨가 급여가 계란의 리그난 함량에 미치는 영향)

  • Hye Mi Kang;Eun Ji Park;Sun Young Park;Dae Youn Hwang;Jong-Choon Lee;Myunghoo Kim;Young Whan Choi
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.18-27
    • /
    • 2024
  • Laying hens are known to be able to 'bio-accumulate' the health-promoting ingredients of their diet into eggs. The purpose of this study was to characterize lignan-rich eggs as functional food fed with Schisandra fruit by-product (SCP). Experimental diets were formulated using yellow corn, rice bran, soybean meal, fish meal, meat bone meal, poultry meal, vitamin premix, mineral premix, CaCO3, and supplemented Schisandra chinensis by-product. This experiment conducted a completely randomized design with 5 treatments for 5 laying hens. Levels of SCP were fed control diet or each formulated diet containing 1%, 3%, 5% and 7% SCP powder. The weight of eggs and the lignan content in white and yolk of egg were investigated every 7 days. Egg production and egg weight were not affected by diet at less than 5% SCP in the diet, but were significantly reduced when the diet was supplemented with a high concentration of 7% SCP after 3 weeks. Yolks and white in eggs were analyzed by using a high performance liquid chromatography (HPLC) to determine the lignans profile. Higher dietary SCP supplementation significantly increased gomisin N and schisandrin C in Acetonitrile (p<0.05). Gomisin N in egg white increased in a concentration-dependent manner, but shisandrin C not detected. These results indicated that the use of SCP powder in layering diets was effective in egg quality and for the production of lignans fortified eggs. In conclusion, dietary supplementation of Schisandra by-product with less than 5% can produce lignans-enrich eggs used as functional foods.

Health Assessment of the Nakdong River Basin Aquatic Ecosystems Utilizing GIS and Spatial Statistics (GIS 및 공간통계를 활용한 낙동강 유역 수생태계의 건강성 평가)

  • JO, Myung-Hee;SIM, Jun-Seok;LEE, Jae-An;JANG, Sung-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.18 no.2
    • /
    • pp.174-189
    • /
    • 2015
  • The objective of this study was to reconstruct spatial information using the results of the investigation and evaluation of the health of the living organisms, habitat, and water quality at the investigation points for the aquatic ecosystem health of the Nakdong River basin, to support the rational decision making of the aquatic ecosystem preservation and restoration policies of the Nakdong River basin using spatial analysis techniques, and to present efficient management methods. To analyze the aquatic ecosystem health of the Nakdong River basin, punctiform data were constructed based on the position information of each point with the aquatic ecosystem health investigation and evaluation results of 250 investigation sections. To apply the spatial analysis technique, the data need to be reconstructed into areal data. For this purpose, spatial influence and trends were analyzed using the Kriging interpolation(ArcGIS 10.1, Geostatistical Analysis), and were reconstructed into areal data. To analyze the spatial distribution characteristics of the Nakdong River basin health based on these analytical results, hotspot(Getis-Ord Gi, $G^*_i$), LISA(Local Indicator of Spatial Association), and standard deviational ellipse analyses were used. The hotspot analysis results showed that the hotspot basins of the biotic indices(TDI, BMI, FAI) were the Andong Dam upstream, Wangpicheon, and the Imha Dam basin, and that the health grades of their biotic indices were good. The coldspot basins were Nakdong River Namhae, the Nakdong River mouth, and the Suyeong River basin. The LISA analysis results showed that the exceptional areas were Gahwacheon, the Hapcheon Dam, and the Yeong River upstream basin. These areas had high bio-health indices, but their surrounding basins were low and required management for aquatic ecosystem health. The hotspot basins of the physicochemical factor(BOD) were the Nakdong River downstream basin, Suyeong River, Hoeya River, and the Nakdong River Namhae basin, whereas the coldspot basins were the upstream basins of the Nakdong River tributaries, including Andong Dam, Imha Dam, and Yeong River. The hotspots of the habitat and riverside environment factor(HRI) were different from the hotspots and coldspots of each factor in the LISA analysis results. In general, the habitat and riverside environment of the Nakdong River mainstream and tributaries, including the Nakdong river upstream, Andong Dam, Imha Dam, and the Hapcheon Dam basin, had good health. The coldspot basins of the habitat and riverside environment also showed low health indices of the biotic indices and physicochemical factors, thus requiring management of the habitat and riverside environment. As a result of the time-series analysis with a standard deviation ellipsoid, the areas with good aquatic ecosystem health of the organisms, habitat, and riverside environment showed a tendency to move northward, and the BOD results showed different directions and concentrations by the year of investigation. These aquatic ecosystem health analysis results can provide not only the health management information for each investigation spot but also information for managing the aquatic ecosystem in the catchment unit for the working research staff as well as for the water environment researchers in the future, based on spatial information.