• Title/Summary/Keyword: Teaching and learning model

Search Result 1,114, Processing Time 0.026 seconds

Development of a Program for Topophilia Geological Fieldwork Based on Science Field Study Area in Youngdong, Chungcheongbuk-do (충북 영동 지역의 과학학습장을 활용한 토포필리아 야외지질학습 프로그램 개발)

  • Yoon, Ma-Byong;Nam, Kye-Soo;Baek, Je-Eun;Bong, Phil-Hun;Kim, Yu-Young
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.10 no.1
    • /
    • pp.76-89
    • /
    • 2017
  • The purpose of this study is to develop a science field study area using Geumgang(Geum River), fossil origins and various geological resources in Youngdong area of Chungcheongbuk-do as educational resources; and utilize them to develop an education program to cultivate earth science and topophilia. The Youngdong sedimentary basin (Cretaceous period) has a well-developed outcrop along the Geumgang and it is therefore easy to find various geological structures, plant fossils, and dinosaur fossils. Also, it has a distinct sedimentary structure, such as mud cracks, ripple marks and cross-bedding. Science field study area(6 observation sites) were developed based on school curriculum, textbook analysis, and professional earth science education panel discussion to create a convergence education program. The result of validating the developed program showed that all the items were satisfactory ($CVR{\geq}0.88$) in the test categories. The science field study teaching-learning model was applied to actual classes. The evaluation result for class satisfaction was positive, scoring Rickert scale 4.18. The result of observation about the outdoor classroom process in the science field study area revealed that students were able to form a new image of the beautiful scenery of the Geumgang. Also, the students could gain a new understanding, concept and value of various geological objects (sandy beach, stepping-stones, dinosaur footprint fossils, sedimentary formation), which naturally allowed them to form topophilia.

Analysis of Preservice Chemistry Teachers' Modelling Ability and Perceptions in Science Writing for Audiences of General Chemistry Experiment Using Argument-based Modeling Strategy (논의-기반 모델링 전략을 이용한 일반화학실험에서 글쓰기 대상에 따른 예비화학교사들의 모델링 능력 및 모델링에 대한 인식 분석)

  • Cho, Hye Sook;Kim, HanYoung;Kang, Eugene;Nam, Jeonghee
    • Journal of the Korean Chemical Society
    • /
    • v.63 no.6
    • /
    • pp.459-472
    • /
    • 2019
  • The purpose of this study was to investigate the effect of science writing for different audiences on preservice chemistry teachers' chemistry concept understanding and modeling ability in general chemistry experiment activities using Argument-based Modeling (AbM) strategy. And we also examined preservice chemistry teachers' perceptions of modeling in different audience groups. The participants of the study were 18 university students in the first grade of preservice chemistry teachers taking a general chemistry experiment course. They completed eleven topics of general chemistry experiment using argument-based modeling strategy. The understanding of chemistry concept was compared with the effect size of pre- and post-chemistry concept test scores. To find out modeling ability, we analyzed level of model by each preservice chemistry teacher. Analytical framework for the modeling ability was composed of three elements, explanation, representation, and communication. The questionnaire was conducted to check up on preservice chemistry teacher's recognition of modeling. The result of analyzing the effect of modeling for different audience on the understanding of chemistry concept and modeling ability, the preservice chemistry teachers' were found to be more effective when the level of audience was low. There was no difference in the recognition of modeling between the groups for audience. However, we could confirm that the responses of preservice chemistry teachers are changed in concrete when they have an experience in succession on modeling.

The Validity and Reliability of Communication Skills Attitude Scale (CSAS) for Nursing Students (간호대학생의 의사소통 태도 측정도구 타당도 및 신뢰도 검증)

  • Song, Mi-Ok;Yun, So-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.345-355
    • /
    • 2017
  • The purpose of this study was to examine the validity and reliability of the Communication Skills Attitude Scale, which is used to examine communication learning attitudes for domestic nursing students. Study subjects were 401 nursing students at two nursing college who completed the CSAS scale consisting of 26 items from June 1 to 15. Data were analyzed using exploratory factor analysis, confirmatory factor analysis, internal consistency with IBM Statistics SPSS 21.0, and the IBM Statistics AMOS 21.0 program. To verify the construction factor of the scale, exploratory factor analysis with varimax rotation was performed, resulting in four factors but confirmed positive and negative attitudes two factors with 19 items considering the construct of theory and interpretability. The internal structure of the scale was schematized using confirmatory factor analysis, and goodness of fit of the final research model was very appropriate as shown by ${\chi}^2=446.475$ (df=148, p<0.001), TLI=.90, CFI=.91, RMSEA=.07, SRMR=.05. The final scale consisted of 19 items and two factors based on the confirmatory factor analysis. Cronbach's ${\alpha}$ for final scale was .90, showing internal consistency. The CSAS is expected to be useful to monitor the effectiveness of multiple teaching strategies about communication for domestic nursing students.

A Study on the Educational Meaning of eXplainable Artificial Intelligence for Elementary Artificial Intelligence Education (초등 인공지능 교육을 위한 설명 가능한 인공지능의 교육적 의미 연구)

  • Park, Dabin;Shin, Seungki
    • Journal of The Korean Association of Information Education
    • /
    • v.25 no.5
    • /
    • pp.803-812
    • /
    • 2021
  • This study explored the concept of artificial intelligence and the problem-solving process that can be explained through literature research. Through this study, the educational meaning and application plan of artificial intelligence that can be explained were presented. XAI education is a human-centered artificial intelligence education that deals with human-related artificial intelligence problems, and students can cultivate problem-solving skills. In addition, through algorithmic education, it is possible to understand the principles of artificial intelligence, explain artificial intelligence models related to real-life problem situations, and expand to the field of application of artificial intelligence. In order for such XAI education to be applied in elementary schools, examples related to real world must be used, and it is recommended to utilize those that the algorithm itself has interpretability. In addition, various teaching and learning methods and tools should be used for understanding to move toward explanation. Ahead of the introduction of artificial intelligence in the revised curriculum in 2022, we hope that this study will be meaningfully used as the basis for actual classes.

Case Study on the Pre-Service Earth Science Teachers' Faults Discrimination on Geological Map using Eye Tracker (시선 추적기를 활용한 지질도에서 예비 지구과학교사들의 단층 판별에 대한 사례 연구)

  • Woong Hyeon Jeon;Duk Ho Chung;Chul Min Lee
    • Journal of the Korean earth science society
    • /
    • v.44 no.3
    • /
    • pp.210-221
    • /
    • 2023
  • The purpose of this study is to evaluate the content knowledge and problem solving process used by pre-service earth science teachers while discriminating faults on geological maps. For this, we collected and evaluated data on fixation duration and gaze plot, while pre-service earth science teachers (N=12) solved the problem on faults interpretation using an eye tracker (Tobii Pro Glass 2 model). The results were as follows. First, most of the pre-service earth science teachers know the concepts of the normal and reverse fault but they do not know the procedural knowledge essential for fault interpretation on geological maps. Second, the pre-service earth science teachers did not draw a geological cross-sectional map to interpret the fault on the geological map and interpreted the fault based on two-dimensional information collected from the geological map rather than three-dimensional information. Therefore, it is essential to improve the teaching and learning environment so that pre-service earth science teachers who will become earth science teachers in the future can learn procedural knowledge essential to comprehend natural phenomena including understanding natural phenomena. The results of this study can substantially help organize a new earth science curriculum or develop materials on teachers' education in the future.

The Effects of Tasks Setting for Mathematical Modelling in the Complex Real Situation (실세계 상황에서 수학적 모델링 과제설정 효과)

  • Shin, Hyun-Sung;Lee, Myeong-Hwa
    • Journal of the Korean School Mathematics Society
    • /
    • v.14 no.4
    • /
    • pp.423-442
    • /
    • 2011
  • The purpose of this study was to examine the effects of tasks setting for mathematical modelling in the complex real situations. The tasks setting(MMa, MeA) in mathematical modelling was so important that we can't ignore its effects to develop meaning and integrate mathematical ideas. The experimental setting were two groups ($N_1=103$, $N_2=103$) at public high school and non-experimental setting was one group($N_3=103$). In mathematical achievement, we found meaningful improvement for MeA group on modelling tasks, but no meaningful effect on information processing tasks. The statistical method used was ACONOVA analysis. Beside their achievement, we were much concerned about their modelling approach that TSG21 had suggested in Category "Educational & cognitive Midelling". Subjects who involved in experimental works showed very interesting approach as Exploration, analysis in some situation ${\Rightarrow}$ Math. questions ${\Rightarrow}$ Setting models ${\Rightarrow}$ Problem solution ${\Rightarrow}$ Extension, generalization, but MeA group spent a lot of time on step: Exploration, analysis and MMa group on step, Setting models. Both groups integrated actively many heuristics that schoenfeld defined. Specially, Drawing and Modified Simple Strategy were the most powerful on approach step 1,2,3. It was very encouraging that those experimental setting was improved positively more than the non-experimental setting on mathematical belief and interest. In our school system, teaching math. modelling could be a answer about what kind of educational action or environment we should provide for them. That is, mathematical learning.

  • PDF

The Effect of Creative Problem-Solving Instruction Model on the Creativity and Environment-Awareness in Elementary Practical Arts Environmental Education (초등실과 환경단원의 창의적 문제해결수업이 아동의 창의성 및 환경의식에 미치는 효과)

  • 최청림;정미경
    • Journal of Korean Home Economics Education Association
    • /
    • v.15 no.4
    • /
    • pp.115-132
    • /
    • 2003
  • The purpose of this study is aimed at giving proof that helps the elementary practical arts education system accomplish as the effects are turned out experimentally. Two classes of the sixth grade of J elementary school in Dae-gu have been selected in order to be experimented. One was chosen as an experimental group, the other was done as a comparative group. The creative-problem-solving learning-model was applied to the experimental group, and the traditional way of teaching was applied to the comparative group. For four classes of the sixth grades, ‘chapter 8: Making with recycled materials’ was proceeded as the content. Then. tests about the way of environmental awareness and creativity were carried out twice. After that, the results of pre and after-test in the comparative and experiment groups were compared using the t-test method. Following the analysis of the data collected in this study. the following major observations were obtained: First, children who were educated the creative problem-solving in a practical arts education achieved higher scores than before. Therefore, it turns out that the CPS method is an effective way to improve the environmental awareness in children. It showed that it included lots of daily habits connected with daily life and it made the intention to carry out the environment-preservation stronger and children´s attitude towards the environment improved. Moreover, making with recycled materials was used to solve an environmental problem, affecting in a positive way in our life. It also made the positive recognition about the environment. Second. the application of the creative problem-solving class of the practical arts education can make positive results to children. It helped children to have more interest in the environment around them. Children´s fluency, flexibility and originality in their ideas were improved as much as possible while they were solving problems. Consequently, the application of the creative problem-solving class model of elementary practical arts environmental education lets children expand environment consciousness and creativity.

  • PDF

Development of Design Elements of Rehabilitation for Individuals with Developmental Disabilities Based on Cultural Convergence of Lifelong Education for Individuals with Disabilities: Reflect Basic Related Fields such as Rehabilitation Science and Special Education as Centripetal Points (장애인평생교육 문화융합(cultural convergence) 기반의 발달장애 재활 설계 요소 개발: 재활과학-특수교육 기초 유관 분야 구심점)

  • Kim, Young-Jun;Han, Seung-A
    • The Journal of the Convergence on Culture Technology
    • /
    • v.8 no.3
    • /
    • pp.427-434
    • /
    • 2022
  • This study aims to develop design elements for cultural convergence between rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities, which is a key area in the practical support system for independent life support for individuals with developmental disabilities. As for the research method, a procedure for conducting FGI by forming two teams for professors majoring in special education and rehabilitation science was formed. The research was presented in three upper categories (universal cultural convergence elements, field-centered cultural convergence elements, and policy-centered cultural convergence elements) that should be designed for cultural convergence between rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities. In addition, subcategories were specifically composed for each upper category. First, as a universal cultural element, "open creative convergence" was presented in principle, which can be explained as a principle of exploring and practicing the validity of convergence between related fields for rehabilitation for individuals with developmental disabilities and lifelong education for individuals with disabilities. Second, field-centered cultural factors included development of joint practice model between fields of rehabilitation science and special education, subject matter education knowledge and skills, teaching and learning methods, learning career roadmaps, employment and job career development roadmaps, and the formation of an independent life development history certification system. Third, as policy-centered cultural elements, the formation of a curriculum integration composition system between local related institutions, the establishment of a qualification development path for coordinator-professional teacher-type personnel, and the organizational systematization between school-center types were presented. The study concluded that independent life support for individuals with developmental disabilities should not only be guaranteed for the entire life of adulthood, but also a lifelong education for individuals with disabilities based rehabilitation support system for individuals with developmental disabilities should be established through cultural convergence.

The development of resources for the application of 2020 Dietary Reference Intakes for Koreans (2020 한국인 영양소 섭취기준 활용 자료 개발)

  • Hwang, Ji-Yun;Kim, Yangha;Lee, Haeng Shin;Park, EunJu;Kim, Jeongseon;Shin, Sangah;Kim, Ki Nam;Bae, Yun Jung;Kim, Kirang;Woo, Taejung;Yoon, Mi Ock;Lee, Myoungsook
    • Journal of Nutrition and Health
    • /
    • v.55 no.1
    • /
    • pp.21-35
    • /
    • 2022
  • The recommended meal composition allows the general people to organize meals using the number of intakes of foods from each of six food groups (grains, meat·fish·eggs·beans, vegetables, fruits, milk·dairy products and oils·sugars) to meet Dietary Reference Intakes for Koreans (KDRIs) without calculating complex nutritional values. Through an integrated analysis of data from the 6th to 7th Korean National Health and Nutrition Examination Surveys (2013-2018), representative foods for each food group were selected, and the amounts of representative foods per person were derived based on energy. Based on the EER by age and gender from the KDRIs, a total of 12 kinds of diets were suggested by differentiating meal compositions by age (aged 1-2, 3-5, 6-11, 12-18, 19-64, 65-74 and ≥ 75 years) and gender. The 2020 Food Balance Wheel included the 6th food group of oils and sugars to raise public awareness and avoid confusion in the practical utilization of the model by industries or individuals in reducing the consistent increasing intakes of oils and sugars. To promote the everyday use of the Food Balance Wheel and recommended meal compositions among the general public, the poster of the Food Balance Wheel was created in five languages (Korean, English, Japanese, Vietnamese and Chinese) along with card news. A survey was conducted to provide a basis for categorizing nutritional problems by life cycles and developing customized web-based messages to the public. Based on survey results two types of card news were produced for the general public and youth. Additionally, the educational program was developed through a series of processes, such as prioritization of educational topics, setting educational goals for each stage, creation of a detailed educational system chart and teaching-learning plans for the development of educational materials and media.

A hybrid algorithm for the synthesis of computer-generated holograms

  • Nguyen The Anh;An Jun Won;Choe Jae Gwang;Kim Nam
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2003.07a
    • /
    • pp.60-61
    • /
    • 2003
  • A new approach to reduce the computation time of genetic algorithm (GA) for making binary phase holograms is described. Synthesized holograms having diffraction efficiency of 75.8% and uniformity of 5.8% are proven in computer simulation and experimentally demonstrated. Recently, computer-generated holograms (CGHs) having high diffraction efficiency and flexibility of design have been widely developed in many applications such as optical information processing, optical computing, optical interconnection, etc. Among proposed optimization methods, GA has become popular due to its capability of reaching nearly global. However, there exits a drawback to consider when we use the genetic algorithm. It is the large amount of computation time to construct desired holograms. One of the major reasons that the GA' s operation may be time intensive results from the expense of computing the cost function that must Fourier transform the parameters encoded on the hologram into the fitness value. In trying to remedy this drawback, Artificial Neural Network (ANN) has been put forward, allowing CGHs to be created easily and quickly (1), but the quality of reconstructed images is not high enough to use in applications of high preciseness. For that, we are in attempt to find a new approach of combiningthe good properties and performance of both the GA and ANN to make CGHs of high diffraction efficiency in a short time. The optimization of CGH using the genetic algorithm is merely a process of iteration, including selection, crossover, and mutation operators [2]. It is worth noting that the evaluation of the cost function with the aim of selecting better holograms plays an important role in the implementation of the GA. However, this evaluation process wastes much time for Fourier transforming the encoded parameters on the hologram into the value to be solved. Depending on the speed of computer, this process can even last up to ten minutes. It will be more effective if instead of merely generating random holograms in the initial process, a set of approximately desired holograms is employed. By doing so, the initial population will contain less trial holograms equivalent to the reduction of the computation time of GA's. Accordingly, a hybrid algorithm that utilizes a trained neural network to initiate the GA's procedure is proposed. Consequently, the initial population contains less random holograms and is compensated by approximately desired holograms. Figure 1 is the flowchart of the hybrid algorithm in comparison with the classical GA. The procedure of synthesizing a hologram on computer is divided into two steps. First the simulation of holograms based on ANN method [1] to acquire approximately desired holograms is carried. With a teaching data set of 9 characters obtained from the classical GA, the number of layer is 3, the number of hidden node is 100, learning rate is 0.3, and momentum is 0.5, the artificial neural network trained enables us to attain the approximately desired holograms, which are fairly good agreement with what we suggested in the theory. The second step, effect of several parameters on the operation of the hybrid algorithm is investigated. In principle, the operation of the hybrid algorithm and GA are the same except the modification of the initial step. Hence, the verified results in Ref [2] of the parameters such as the probability of crossover and mutation, the tournament size, and the crossover block size are remained unchanged, beside of the reduced population size. The reconstructed image of 76.4% diffraction efficiency and 5.4% uniformity is achieved when the population size is 30, the iteration number is 2000, the probability of crossover is 0.75, and the probability of mutation is 0.001. A comparison between the hybrid algorithm and GA in term of diffraction efficiency and computation time is also evaluated as shown in Fig. 2. With a 66.7% reduction in computation time and a 2% increase in diffraction efficiency compared to the GA method, the hybrid algorithm demonstrates its efficient performance. In the optical experiment, the phase holograms were displayed on a programmable phase modulator (model XGA). Figures 3 are pictures of diffracted patterns of the letter "0" from the holograms generated using the hybrid algorithm. Diffraction efficiency of 75.8% and uniformity of 5.8% are measured. We see that the simulation and experiment results are fairly good agreement with each other. In this paper, Genetic Algorithm and Neural Network have been successfully combined in designing CGHs. This method gives a significant reduction in computation time compared to the GA method while still allowing holograms of high diffraction efficiency and uniformity to be achieved. This work was supported by No.mOl-2001-000-00324-0 (2002)) from the Korea Science & Engineering Foundation.

  • PDF