• Title/Summary/Keyword: Te-bearing Au-Ag

Search Result 4, Processing Time 0.019 seconds

Geochemistry of the Moisan Epithermal Gold-silver Deposit in Haenam Area (해남 모이산 천열수 금은광상의 지구화학적 특성)

  • Moon, Dong-Hyeok;Koh, Sang-Mo;Lee, Gill-Jae
    • Economic and Environmental Geology
    • /
    • v.43 no.5
    • /
    • pp.491-503
    • /
    • 2010
  • Geochemical characteristics of the Moisan epithermal gold-silver deposit with total 140 samples in Haenam area, Jeollanamdo were studied by using multivariate statistical analysis (correlation analysis, factor analysis and cluster analysis). The correlation analysis reveals that Ag, Cu, Bi, Te are highly correlated with Au in the both non-mineralized and mineralized zone. It is resulted from the presence of Au-Ag bearing minerals (electrum, sylvanite, calaverite and stuezite) and non Au-Ag containing minerals (chalcopyrite, tellurobismuthite and bismuthinite). Mo shows relatively much higher correlation at the mineralized zone (0.615) than non-mineralized zone (0.269) which implies Mo content is strongly affected by Au-mineralization. While Mn, Cs, Fe, Se correlated with Au at the nonmineralized zone, they have negative correlation at the mineralized zone. Therefore, they seem to be eluviated elements from the host rock during gold mineralization. Sb is enriched during the gold mineralization showing high correlation at the mineralized zone and negative correlation at the non-mineralized zone. According to the factor analysis, Se, Ag, Cs, Te are the indicators of gold mineralization presence due to the strong affection of gold content in the non-mineralized zone. In the mineralized zone, on the other hand, Mo, Te and Sb, Cu are the indicators of gold and silver mineralization, respectively. While the cluster analysis reveals that Cd-Zn-Pb-S, Bi-Fe-Cu-Mn, Se-Te-Au-Cs-Ag, As-Sb-Ba are the similar behavior elements groups in the non-mineralized zone, Cd-Zn-Mn-Pb, Fe-S-Se, As-Bi-Cs, Ag-Sb-Cu, Au-Te-Mo are the similar behavior elements groups in the mineralized zone. Using multivariate statistical analysis as mentioned above makes it possible to compare the behavior of presented minerals and difference of geochemical characteristics between mineralized and non-mineralized zone. Therefore, it will be expected a useful tool on the similar type of mining exploration.

Au-Ag-Te Mineralization by Boiling and Dilution of Meteoric Ground-water in the Tongyeong Epithermal sold System, Korea: Implications from Reaction Path Modeling (광화유체의 비등과 희석에 의한 통영 천열수계 Au-Ag-Te 장화작용에 대한 반응경로 모델링)

  • Maeng-Eon Park;Kyu-Youl Sung
    • Economic and Environmental Geology
    • /
    • v.34 no.6
    • /
    • pp.507-522
    • /
    • 2001
  • At the Tongyeong mine, quartz, rhodochrosite (kutnahorite), muscovite, illite, pyrite, galena, chalcopyrite. sphalerite, acanthite, and hessite are the principal vein minerals. They were deposited under epithermal conditions in two stages. Ore mineral assemblages and associated gangue phases in stage can be clearly divided into two general associations: an early cycle (band) that appeared with introduction of most of the sulfides and electrum, and a later cycle in which base metal and carbonate-bearing assemblages (mostly rhodochrosite) became dominant. Tellurides and some electrum occur as small rounded grains within subhedral-to euhedral pyrite or anhedral galena in stageII. Sulfide mineralization is zoned from pyrite to galena and sphalerite. We have used computer modeling to simulate formation of four stages of vein genesis. The reaction of a single fluid with andesite host rock at 28$0^{\circ}C$, isobaric cooling of a single fluid from 26$0^{\circ}C$ to 12$0^{\circ}C$, and boiling and mixing of a fluid with both decreasing pressure and temperature were studied using the CHILLER program. Calculations show that the precipitation of alteration minerals is due to fluid-andesite interaction as temperature drops. Speciation calculations confirm that the hydrothermal fluids with moderately high salinities and pH 5.7 (acid), were capable of transporting significant quantities of base metals. The abundance of gold in fluid depends critically on the ratio of total base metals and iron to sulfide in the aqueous phase because gold is transported as an Au(HS)$_2$- complex, which is sensitive to sulfide activity. Modeling results for Tongyeong mineralization show strong influence of shallow hydrogenic processes such as boiling and fluid mixing. The variable handing in stageII mineralization is best explained by maltiple boilings of hydrothermal fluid followed by lateral mixing of the fluid with overlying diluted, steam-heated ground water. The degree of similarity of calculated mineral assemblages and observed electrum composition and field relationships shows the utility of the numerical simulation method in identifying chemical processes that accompany boiling and mixing in Te-bearing Au-Ag system. This has been applied in models to narrow the search area for epithermal ores.

  • PDF

Geochemistry of a Te-bearing Au-Ag mineralization of the Yuryang mine: Fluid inclusion and stable isotope study

  • Heo, Chul-Ho;Choi, Seon-Gyu;Pak, Sang-Joon;Choi, Sang-Hoon;Yun, Seong-Taek
    • Proceedings of the KSEEG Conference
    • /
    • 2003.04a
    • /
    • pp.178-179
    • /
    • 2003
  • Mesothermal, tellurium-bearing gold-silver vein mineralization of the Yuryang mine was formed in mineralogically complex quartz-sulfide veins that filled the fault fractures in Precambrian gneiss within Gyeonggi Massif. Ore grades average 179 g/ton gold with a gold/silver ratio of 1.5 : 1. Ore mineralization was deposited in single stage. Major ore mineralization can be divided into two mineralization phases with increasing paragenetic time: Fe-sulfide and base-metal mineralization phase $\rightarrow$ telluride mineralization phase. (omitted)

  • PDF

Ore minerals and Genetic Environments from the Baekun Gold-silver Deposit, Republic of Korea (백운 금-은광상에서 산출되는 광석광물과 생성환경)

  • Yoo, Bong-Chul;Lee, Hyun-Koo;Kim, Ki-Jung
    • Economic and Environmental Geology
    • /
    • v.39 no.1 s.176
    • /
    • pp.9-25
    • /
    • 2006
  • Baekun gold-silver deposit is an epithermal quartz vein that is filling the fault zone within Triassic or Jurassic foliated granodiorite. Mineralization is associated with fault-breccia zones and can be divided into two stages. Stage I which can be subdivided early and late depositional stages is main ore mineralization and stage II is barren. Early stage I is associated with wallrock alteration and the formation of sulfides such as arsenopyrite, pyrite, pyrrhotite, sphalerite, marcasite, chalcopyrite, stannite, galena. Late stage I is characterized by Au-Ag mineralization such as electrum, Ag-bearing tetrahedrite, stephanite, boulangerite, pyrargrite, argentite, schirmerite, native silver, Ag-Te-Sn-S system, Ag-Cu-S system, pyrite, chalcopyrite and galena. Fluid inclusion data indicate that homogenization temperatures and salinity of stage I range from $171.6^{\circ}C\;to\;360.8^{\circ}C\;and\;from\;0.5\;to\;10.2\;wt.\%\;eq.$ NaCl, respectively. It suggest that ore forming fluids were cooled and diluted with the mixing of meteoric water. Also, Temperature (early stage I: $236\~>380^{\circ}C,\;$ late stage $I: <197\~272^{\circ}C$) and sulfur fugacity (early stage $I:\;10^{-7.8}$ a atm., late stage I: $10^{-14.2}\~10^{-l6}atm$.) deduced mineral assemblages from stage 1 decrease with paragenetic sequence. Sulfur ($2.4\~6.1\%_{\circ}$(early stage $I=3.4\~5.3\%_{\circ},\;late\;stage\;I=2.4\~6.1\%_{\circ}$)), oxygen ($4.5\~8.8\%_{\circ}$(quartz: early stage $I=6.3\~8.8\%_{\circ}$, late stage $I=4.5\~5.6\%_{\circ}$)), hydrogen ($-96\~-70\%_{\circ}$ (quartz: early stage $I=-96\~-70\%_{\circ},\;late\;stage\;f=-78\~-74\%_{\circ},\;calcite:\;late\;stage\;I=-87\~-76\%_{\circ}$)) and carbon ($-6.8\~-4.6\%_{\circ}$ (calcite: late stage I)) isotope compositions indicated that hydrothermal fluids may be magmaticorigin with some degree of mixing of another meteoric water for paragenetic time.