• 제목/요약/키워드: Te doped

검색결과 134건 처리시간 0.025초

The Effect of Transverse Magnetic field on Macrosegregation in vertical Bridgman Crystal Growth of Te doped InSb

  • Lee, Geun-Hee;Lee, Zin-Hyoung
    • 한국결정성장학회:학술대회논문집
    • /
    • 한국결정성장학회 1996년도 The 9th KACG Technical Annual Meeting and the 3rd Korea-Japan EMGS (Electronic Materials Growth Symposium)
    • /
    • pp.522-522
    • /
    • 1996
  • An investigation of the effects of transverse magnetic field and Peltier effect on melt convection and macrosegregation in vertical Bridgman crystal grosth of Te doped InSb was been carried out by means of microstructure observation, Hall measurement, electrical resistivity measurement and X-ray analysis. Before the experiments, Interface stability, convective instability and suppression of convection by magnetic field were calculated theoretically. After doping 1018, 1019 cm-3 Te in InSb, the temperature of Bridgman furnace was set up at $650^{\circ}C$. The samples were grown in I.D. 11mm, 100mm high quartz tube. The velocity of growth was about 2${\mu}{\textrm}{m}$/sec. In order to obtain the suppression of convection by magnetic field in the middle of growth, 2-4KG magnetic field was set on the melt. For searching of the shape of solid-liquid interface and the actual velocity of crystal growth, let 2A current flow from solid to liquid for 1second every 50seconds repeatedly (Peltier effect). The grown InSb was polycrystal, and each grain was very sharp. There was no much difference between the sample with and without magnetic field at a point of view of microstructure. For the sample with Peltier effect, the Peltier marks(striation) were observed regularly as expected. Through these marks, it was found that the solid-liquid interface was flat and the actual growth velocity was about 1-2${\mu}{\textrm}{m}$/sec. On the ground of theoretical calculation, there is thermosolutal convection in the Te doped InSb melt without magnetic field in this growth condition. and if there is more than 1KG magnetic field, the convection is suppressed. Through this experiments, the effective distribution coefficients, koff, were 0.35 in the case of no magnetic field, and 0.45 when the magnetic field is 2KG, 0.7 at 4KG. It was found that the more magnetic field was applied, the more convection was suppressed. But there was some difference between the theoretical calculation and the experiment, the cause of the difference was thought due to the use of some approximated values in theoretical calculation. In addition to these results, the sample with Peltier effect showed unexpected result about the Te distribution in InSb. It looked like no convection and no macrosegregation. It was thought that the unexpected behavior was due to Peltier mark. that is, when the strong current flew the growing sample, the mark was formed by catching Te. As a result of the phenomena, the more Te containing thin layer was made. The layer ruled the Hall measurement. The values of resistivity and mobility of these samples were just a little than those of other reference. It was thought that the reason of this result was that these samples were due to polycrystal, that is, grain boundaries had an influence on this result.

  • PDF

Optical Characteristics of Oxygen-doped ZnTe Thin Films Deposited by Magnetron Sputtering Method

  • Kim, Seon-Pil;Pak, Sang-Woo;Kim, Eun-Kyu
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제41회 하계 정기 학술대회 초록집
    • /
    • pp.253-253
    • /
    • 2011
  • ZnTe semiconductor is very attractive a material for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. The optoelectronic properties of ZnTe:O film allow to expect a large optical gain in the intermediate emission band, which emission band lies about 0.4-0.6 eV below the conduction band of ZnTe [2]. So, the ZnTe system is useful for the production of high-efficiency multi-junction solar cells [2,3]. In this work, the ZnTe:O thin films were deposited on Al2O3 substrates by using the radio frequency magnetron sputtering system. Three sets of samples were prepared using argon and oxygen as the sputtering gas. The deposition chamber was pre-pumped down to a base pressure of 10-7 Torr before introducing gas. The deposition pressure was fixed at 10-3 Torr throughout this work. During the ZnTe deposition, the substrate temperature was 300 oC. The optical properties were also investigated by using the ultraviolte-visible (UV-Vis) spectrophotometer.

  • PDF

90% $Bi_2Te_3-10% Bi_2Se_3$ 단결정의 밴드갭 에너지와 열전특성 (Band-Gap Energy and Thermoelectric Properties of 90% $Bi_2Te_3-10% Bi_2Se_3$ Single Crystals)

  • 하헌필;현도빈;황종승;오태성
    • 한국재료학회지
    • /
    • 제9권4호
    • /
    • pp.349-354
    • /
    • 1999
  • Dopant를 첨가하지 않은 시료와 donor dopant로 $CdI_2$를 첨가한 $Bi_2Te_3-10%$ 단결정을 Bridgman법으로 성장시키고 Hall 계수, 전하이동도, 전기비저향, Seebeck 계수, 열전도도 빛 성능지수를 77~600K의 온도범위에서 측정하였다. Dopant를 첨가하지 않은 90% $Bi_2Te_3-10% Bi_2Se_3$ 단결정에서 포화정공농도는 $5.85\times10_{18}cm^{-3}$ 이고 degenerate 온도는 127K 이었£며, 전하 이동에 대한 산란인자는 -0.23 이고 전자이동도와 정꽁이동도의 비 ($\mu_e/\mu_h)$는 1.45 이었다. 90% $Bi_2Te_3-10% Bi_2Te_3$ 단결정의 OK 에서의 밴드갭 에너지는 0.200 eV 로서 $Bi_2Te_3-Bi_2Se_3$계 단결정에서눈 $Bi_2Se_3$의 놓도가 증가할수록 밴 드갭 에너지가 증가하였다. Donor dopant로 $CdI_2$를 첨가한 90% $Bi_2Te_3-Bi_2Se_3$ 조성의 n형 단결정에서 성능지수의 최대값은 $CdI_2$를 0.05 wt% 첨가한 경우에 약 230K에서 $3.2\times10^{-3}/K$를 나타내었다.

  • PDF

Cu를 도우프한 소결체 CdS/CdTe 태양전지의 특성 (Photovoltaic Properties of Cu Doped CdS/CdTe Solar Cells)

  • 김철수;임호빈
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1989년도 춘계학술대회 논문집
    • /
    • pp.59-61
    • /
    • 1989
  • The cell parameters of the sintered CdS/CdTe solar cells in which te CuCl$_2$was added in the carbon paste after the sintering of the CdS/CdTe composites an were annealed at 35$0^{\circ}C$ for 10 min in nitrogen are investigated. Voc and FF do not change significantly as the CuCl$_2$increasing up to 500 ppm, Jsc increases with futher increase in copper. The hole concentration, determined by C-V measurement, increases to $1.5\times$10$^{16}$ ㎤ as the copper increased to 25 ppm and then stays at about the same value with further increase in copper.

  • PDF

실시간 비저항 측정을 통한 N-doped $Ge_2Sb_2Te_5$ 박막의 결정화에 대한 연구

  • 이도규;도기훈;손현철;고대홍
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.136-136
    • /
    • 2010
  • $Ge_2Sb_2Te_5$ (GST)는 광학 스토리지 및 PRAM(Phase-change Random Access Memory)에 적용 가능한 대표적인 상변화 물질이며 상변화 거동에 대한 다양한 연구가 진행되고 있다. 차세대 비휘발성 메모리로 각광을 받고 있는 PRAM의 경우 저전력 그러나 향후 고집적, 고성능 PRAM 소자구현을 위해서는 Reset 전류 감소를 통한 소비 전력 감소, 인접 셀간의 'cross talking'을 방지할 수 있는 열적 안정성 개선 등의 문제점들을 해결해야 한다. GST 물질의 전기적, 열적 특성을 조절하여 이러한 문제를 해결하기 위하여 GST 물질에 이종의 원소를 첨가하는 연구가 활발히 진행되고 있으며, 특히 질소 첨가에 의해 결정 성장 억제를 통한 결정화 온도 증가, 결정질의 저항 증가 등의 보고가 있었다. 본 연구에서는 질소를 첨가한 N-doped $Ge_2Sb_2Te_5$ (NGST) 박막의 상변화 거동을 규명하고 GST 박막과 비교하여 첨가된 질소의 영향을 분석하고자 한다. D.C Magnetron sputtering 방법으로 증착된 GST와 NGST 박막을 등온으로 유지하여 각 온도별로 열처리 시간 증가에 따른 비저항을 실시간으로 측정하여 GST와 NGST 박막의 상분율을 계산하고 Kissinger 모델을 이용하여 effective activation energy ($E_a$)를 구하였다. GST와 NGST 박막의 $E_a$는 각각 $2.08\;{\pm}\;0.11\;eV$$2.66\;{\pm}\;0.12\;eV$로 계산되었다. 따라서 첨가된 질소에 의해 NGST 박막의 결정화를 위하여 GST 박막의 경우보다 더 큰 활성화 에너지가 필요하다.

  • PDF

밀폐유도용해로 제조한 CoSb3-yTey의 열전특성 (Thermoelectric Properties of CoSb3-yTey Prepared by Encapsulated Induction Melting)

  • 김미정;심우섭;어순철;김일호
    • 한국재료학회지
    • /
    • 제16권7호
    • /
    • pp.412-415
    • /
    • 2006
  • Te-doped $CoSb_3$ was prepared by the encapsulated induction melting, and its doping effects on the thermoelectric properties were investigated. Single phase ${\delta}-CoSb_3$ was successfully obtained by the subsequent annealing at 773 K for 24 hrs. Tellurium atoms acted as electron donors by substituting antimony atoms. Thermoelectric properties were remarkably improved by the appropriate doping. Dimensionless figure of merit was obtained to be 0.83 at 700K for the $CoSb_{2.8}Te_{0.2}$ specimen.

Melt spinning법에 의한 n형 90% $Bi_2Te_3$+10% $Bi_2Se_3$ 열전소결체의 열전특성 (Thermoelectric Properties of N-type 90% $Bi_2Te_3$+10% $Bi_2Se_3$ Thermoelectric Materials Produced by Melt spinning method and Sintering)

  • 김익수
    • 한국분말재료학회지
    • /
    • 제5권1호
    • /
    • pp.50-56
    • /
    • 1998
  • A new process using rapid solidification (melt spinning method) followed by pressing and sintering was investigated to produce the n-type thermoelectric ribbons of 90% $Bi_2Te_3$+10% $Bi_2Se_3$ doped with $CdCl_2$. Quenched ribbons are very brittle and consisted of homogeneous $Bi_2Te_3-Bi_2Se_3$ pseudo-binary solid solutions. Property variations of the materials was investigated as a function of variables, such as dopant $CdCl_2$ quantity and sintering temperature. When the process parameters were optimized, the maximum figure of merit was $2.146{\times}10^{-3}K^{-1}$.

  • PDF

Thermoelectric Properties of N-type 90% $Bi_2Te_3+10%Bi_2Se_3$ Thermoelectric Materials Produced by Melt Spinning Method and Sintering

  • Kim, Taek-Soo;Chun, Byong-Sun
    • 한국분말야금학회:학술대회논문집
    • /
    • 한국분말야금학회 2006년도 Extended Abstracts of 2006 POWDER METALLURGY World Congress Part 1
    • /
    • pp.459-460
    • /
    • 2006
  • N-type $Bi_2Te_3-Sb_2Te_3$ solid solutions doped with 1$CdCl_2$ was prepared by melt spinning, crushing and vacuum sintering processes. Microstructure, bending strength and thermoelectric property were investigated as a function of the doping quantity from 0.03wt.% to 0.10wt.% and sintering temperature from $400^{\circ}C$ to $500^{\circ}C$, and finally compared with those of conventionally fabricated alloys. The alloy showed a good structural homogeneity as well as bending strength of $3.88Kgf/mm^2$. The highest thermoelectric figure of merit was obtained by doping 0.03wt.% and sintering at $500^{\circ}C$.

  • PDF

상변화 메모리 응용을 위한 Sb을 첨가한 $Ge_1Se_1Te_2$ 박막의 상변화 특성 (Phase-Change Properties of the Sb-doped $Ge_1Se_1Te_2$ thin films application for Phase-Change Random Access Memory)

  • 남기현;최혁;구용운;정홍배
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2007년도 하계학술대회 논문집 Vol.8
    • /
    • pp.156-157
    • /
    • 2007
  • For tens of years many advantages of Phase-Change Random Access Memory(PRAM) were introduced. Although the performance improved gradually, there are some portions which must be improved. So, we studied new constitution of $Ge_1Se_1Te_2$ chalcogenide material to improve phase transition characteristic. Actually, the performance properties have been improved surprisingly. However, crystallization time was as long as ever for amorphization time. We conducted this experiment in order to solve that problem by doping-Sb.

  • PDF