• Title/Summary/Keyword: Tc-99m RBC

Search Result 23, Processing Time 0.018 seconds

Study a Technique for Reducing the Influence of Scattered Rays from Surrounding Organs to the Heart during Gated Cardiac Blood Pool scan (Gated Cardiac Blood Pool scan에서의 심장 주위 배후방사능 관심영역 설정시 산란선의 영향을 감소시키기 위한 연구)

  • Kim, Jung-Yul;Park, Hoon-Hee;NamKoong, Hyuk;Cho, Suk-Won;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.1
    • /
    • pp.33-38
    • /
    • 2008
  • Purpose: The Gated cardiac blood pool scan is non-invasive method that a quantitative evaluation of left ventricular function. Also this scan have shown the value of radionuclide ejection fraction measurements during the course of chemotherapy as a predictor of cardiac toxicity. Therefore a reliable method of monitoring its cardiotoxic effects is necessary. the purpose of this study is to minimize the overestimate of left ventricular ejection fraction (LVEF) by modified body position to reduce the influence of scattered rays from surrounding organs of the heart in the background region of interest. Materials and Methods: Gated cardiac blood pool scan using in vivo $^{99m}Tc$-red blood cell (RBC) was carried out in 20 patients (mean $44.8{\pm}8.6$ yr) with chemotherapy for a breast carcinoma. Data acquisition requires about 600 seconds and 24 frames of one heart cycle by the multigated acquisition mode, Synchronization deteriorates toward the end of the cycle and with the distance from the trigger signal (R-wave) by ECG gating. Gated cardiac blood pool scan was studied with conventional method (supine position and the detector head in $30-45^{\circ}$ left anterior oblique position and caudal $10-20^{\circ}$ tilt) and compared with modified method (left lateral flexion position with 360 mL of drinking water). LVEF analysis was performed by using the automatically computer mode. Results: The ROI counts of modified scan method were lower than LV conventional method ($1429{\pm}251$ versus $1853{\pm}243$, <0.01). And LVEF of modified method was also decrease compared with conventional method ($58.3{\pm}5.6%$ versus $65.3{\pm}6.1%$, <0.01). Imaging analysis indicated that stomach was expanded because of water and spleen position was changed to lateral inferior compared with conventional method. Conclusion: This study shows that the modified method in MUGA reduce the influence of scattered rays from surrounding organs. Because after change the body position to left lateral flexion and drinking water, the location of spleen, left lobe of liver and stomach had changed and they could escaped from background ROI. Therefore, modified method could help to minimize the overestimate LVEF (%).

  • PDF

Evaluation of Various Cardiae Indices and ROC Analysis in Coronary Artery Disease Employing Resting ECG Gated Blood Pool Scan (관상동맥질환에서 휴식기 심전도게이트혈액풀스캔을 이용한 각종 심기능 지표들의 평가 및 ROC 분석)

  • Choi, Chang-Woon;Lee, Dong-Soo;Kim, Sang-Eun;Chung, June-Key;Lee, Myung-Chul;Park, Young-Bae;Seo, Jung-Don;Lee, Young-Woo;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.26 no.1
    • /
    • pp.40-48
    • /
    • 1992
  • Gated blood pool scan is frequently used for evaluating the change in cardiac function in various cardiac diseases. But resting gated blood pool scan using only LVEF as a cardiac index has been consitently shown to have a low sensitivity, which is about 50%, in detecting coronary artery disease. So it is recommended to compare exercise gated blood pool scan to resting gated blood pool scan. Exercise tests, however, are not always possible, especially in patients with musculoskeletal diseases, recent myocardial infarction and in elderly persons. We studied the usefulness of resting gated blood pool scan using multiple indices in evaluating the patients with coronary artery disease. Studied cases were 185 patients with coronary artery disease (angina pectoris 31, myocardial infarction 154) and 25 normals with low likelihood of coronary artery disease. We used $^{99m}Tc-labeled$ RBC, 740 MBq labeled by in vivo method. The data were evaluated by Micro DELTA computer program. The results were as following: 1) The ejection rates (PER, AER) and filling rates (PFR, AFR) were different in normls and patients with angina pectoris or myocardial infarction. 2) Mean phase angle, ejection rates and filling rates could separate normals from coronary artery disease patients with normal LVEF. 3) Regional ejection fraction was decreased at the site of the infarct in patients with myocardial infarction. 4) Peak filling rate was the the most detectable index in evaluation of cardiac function in patients with coronary artery disease. 5) The threshold at 1.5 standard deviation of normal range was considered as the most reliable cut-off value from ROC analysis. These data suggest that the resting gated blood pool scan has an important role in the evaluation of cardiac functional changes using various cardiac indices in patients with coronary artery disease.

  • PDF

Study the Analysis of Comparison with AROI and MROI Mode in Gated Cardiac Blood Pool Scan (게이트심장혈액풀 스캔에서 자동 관심영역 설정과 수동 관심영역 설정 모드의 비교 분석에 관한 고찰)

  • Kim, Jung-Yul;Kang, Chun-Koo;Kim, Yung-Jae;Park, Hoon-Hee;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.222-228
    • /
    • 2008
  • Purpose: The objectives of this study were to compare the left ventricle ejection fraction (LVEF) from gated cardiac blood pool scan (GCBP) for analysis auto-drawing region of interest mode (AROI) and manual-drawing region of interest mode (MROI), respectively. To evaluation the relationships between values produced by both ROI modes. Materials and Methods: Gated cardiac blood pool scan using in vivo method Tc-99m Red Blood Cell were performed for 33 patients (mean age: $53.2{\pm}13.2\;y$) with objective of chemotherapy using single head gamma camera (ADAC Laboratories, Milpitas, CA). Left ventricular ejection fraction was automatically and manually measured, respectively. Results: There was significant difference statistically between AROI and MROI ($LVEF^{AROI}$: $71.4{\pm}12.4%$ vs. $LVEF^{MROI}$: $65.8{\pm}5.9%$, p=0.003). Intra-observer agreements in AROI was higher than MROI ($\gamma^{AROI}=0.964$, Cronbach's $\alpha^{AROI}=0.986$ vs. $\gamma^{MROI}=0.793$, Cronbach's $\alpha^{MROI}=0.911$), either. Additionally, there was no significant difference statistically at best septal view (${\Delta}LVEF^{BSV}=0.7{\pm}2.3%$, p=0.233), however statistically significant difference was found at badly separated septal view (${\Delta}LVEF=10.9{\pm}11.4%$, p=0.001). Moreover, Intra-observer agreements in best septal view was higher than badly separated septal view ($\gamma^{BSV}=0.939$, Cronbach's $\alpha^{BSV}=0.978$; $\gamma=0.948$, Cronbach's $\alpha=0.981$ at AROI, $\gamma^{BSV}=0.836$, Cronbach's $\alpha^{BSV}=0.936$; $\gamma=0.748$, Cronbach's $\alpha=0.888$ at MROI). Conclusion: When best septal view was acquired, LVEF by AROI and MROI indicated not different. Comparing Intra-observer agreements with AROI and MROI, the AROI tended to show higher. Therefore, it is considered that the AROI than MROI is valuable in reproducibility and objective when ROI analysis by acquire left ventricular of best septal view.

  • PDF