• Title/Summary/Keyword: Taylor reaction

Search Result 18, Processing Time 0.02 seconds

PREPARATION OF NICKEL POWDERS BY REDUCTION OF NICKEL HYDROXIDE USING THE TAYLOR FLUID FLOW

  • I.-J. PARK;D.-W. KIM;G.-H. KIM;H.-J. CHAE;H.-C. JUNG
    • Archives of Metallurgy and Materials
    • /
    • v.63 no.3
    • /
    • pp.1443-1447
    • /
    • 2018
  • In this study, Ni(OH)2 was synthesized by the continuous reaction by the Taylor fluid flow and compared with those prepared from the conventional batch type reaction. The nickel powders were synthesized by reduction of Ni(OH)2 in an aqueous solution with hydrazine hydrate acting as the reductant. And then the characteristics of the nickel powder according to the synthesis method were compared. The average particle size of the synthesized Ni(OH)2 using Taylor reactor was generally decreased about 1.5~2.5 times more than the batch reaction. The nickel powders prepared by the batch reaction highly agglomerated with non-uniform particles. In the Taylor reaction, the agglomeration of particles was broken and uniform nickel powder was produced.

A study on the synthesis of fine nickel hydroxide crystalline powder using the taylor fluid flow

  • Park, Il-Jeong;Kim, Dae-Weon;Jung, Hang-Chul
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.27 no.5
    • /
    • pp.268-273
    • /
    • 2017
  • In this study, nickel hydroxide crystalline powders were synthesized by continuous reaction in the taylor fluid flow using nickel chloride, nickel sulphate and sodium hydroxide as raw materials and compared with those prepared by a conventional batch type reaction. The crystallinity of nickel hydroxide prepared by the Taylor fluid flow reaction was higher than that of nickel hydroxide obtained by batch reaction. The particle size of nickel hydroxide decreased about 2.5 to 3.6 times, and the specific surface area was increased.

Synthesis of the Nickel-Cobalt-Manganese Cathode Material Using Recycled Nickel as Precursors from Secondary Batteries

  • Hang-Chul Jung;Deokhyun Han;Dae-Weon Kim;Byungmin Ahn
    • Archives of Metallurgy and Materials
    • /
    • v.66 no.4
    • /
    • pp.987-990
    • /
    • 2021
  • As the amount of high-capacity secondary battery waste gradually increased, waste secondary batteries for industry (high-speed train & HEV) were recycled and materialization studies were carried out. The precipitation experiment was carried out with various conditions in the synthesis of LiNi0.6Co0.2Mn0.2O2 material using a Taylor reactor. The raw material used in this study was a leaching solution generated from waste nickel-based batteries. The nickel-cobalt-manganese (NCM) precursor was prepared by the Taylor reaction process. Material analysis indicated that spherical powder was formed, and the particle size of the precursor was decreased as the reaction speed was increased during the preparation of the NCM. The spherical NCM powder having a particle size of 10 ㎛ was synthesized using reaction conditions, stirring speed of 1000 rpm for 24 hours. The NCM precursor prepared by the Taylor reaction was synthesized as a cathode material for the LIB, and then a coin-cell was manufactured to perform the capacity evaluation.

Numerical Studies of Flow Characteristics and Particle Residence Time in a Taylor Reactor (테일러 반응기의 유동특성과 입자 체류시간에 관한 수치적 연구)

  • Lee, Hyeon Kwon;Lee, Sang Gun;Jeon, Dong Hyup
    • Applied Chemistry for Engineering
    • /
    • v.26 no.1
    • /
    • pp.67-73
    • /
    • 2015
  • Using a computational fluid dynamics technique, the flow characteristics and particle residence time in a Taylor reactor were studied. Since flow characteristics in a Taylor reactor are dependent on the operating conditions, effects of the inlet flow velocity and reactor rotational speed were investigated. In addition, the particle residence time of $LiNiMnCoO_2$ (NMC), which is a cathode material in lithium-ion battery, is estimated in the Taylor vortex flow (TVF) region. Without considering the complex chemical reaction at the inlet, the effect of Taylor flow was studied. The results show that the particle residence time increases as the rotating speed increased and the flow rate decreased.

Numerical Simulation of Mixing and Combustion in a Normal Injection of the Scramjet (초음속 연소기에서의 혼합과 연소현상에 관한 수치해석)

  • Moon, Su-Yeon;Lee, Choong-Won;Sohn, Chang-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.475-480
    • /
    • 2001
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation $(k-\varepsilon)$ model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

  • PDF

Numerical Simulation of Chemically Reacting Shock Wave-Turbulent Boundary Layer Interactions (화학반응이 있는 난류경계층과 충격파의 상호작용에 대한수치해석)

  • Mun, Su-Yeon;Lee, Chung-Won;Son, Chang-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.3
    • /
    • pp.375-383
    • /
    • 2002
  • The flowfield of transverse jet in a supersonic air stream subjected to shock wave turbulent boundary layer interactions is simulated numerically by Generalized Taylor Galerkin(GTG) finite element methods. Effects of turbulence are taken into account with a two-equation (k-$\varepsilon$) model with a compressibility correction. Injection pressures and slot widths are varied in the present study. Pressure, separation extents, and penetration heights are compared with experimental data. Favorable comparisons with experimental measurements are demonstrated.

Synthesis of Monodisperse Silica Particles using Rotating Cylinder Systems

  • Cho, Young-Sang;Shin, Cheol Hwan
    • Korean Chemical Engineering Research
    • /
    • v.54 no.6
    • /
    • pp.792-799
    • /
    • 2016
  • Monodisperse silica nanospheres were synthesized by Stober method using rotating cylinder systems with batch or continuous manner. The particle size could be controlled by adjusting the reactant compositions such as the amount of monomer, catalyst, and water in the reaction mixture. The size and monodispersity of the ceramic particles could be controlled by changing the reaction medium with different alcohols other than ethanol or changing the reaction temperature. The effect of Taylor number (Ta) on the average diameter and standard deviation of silica particles were also studied by adjusting the rotation speed of inner cylinder, and the maximum diameter of particles was observed at Ta ${\approx}3,000$.

A Study on Gas-Liquid Reaction Intensification by Using Rotating Flow (회전유동을 이용한 기체-액체 반응 촉진 기술 연구)

  • Jun Sang Park
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.2
    • /
    • pp.45-54
    • /
    • 2023
  • In the present study, we propose new type of a spinning disk reactor(SDR) with high performance and very convenient structure to make a large scale equipment from lab-scale than the conventional one. A split-disk experimental equipment, based on new type of spinning disk reactor, has been developed to generate an energy to break a bulk of injected gas into smaller gas bubble. Several cases of an experimental observation make it to confirm that a bulk of injecting gas could be continuously break into smaller bubbles. It shows the feasibility to make a scale-up of SDR by using the characteristic of Taylor-Proudman column in rotating flow. A theoretical study on single phase liquid flow is given to predict a liquid induced shear stress, which make the present study to be self-containment.

Theoretical Studies on the Gas-Phase Pyrolysis of Esters The effect of ${\alpha}$- and ${\beta}$-methylation of Ethyl Formates

  • Ikchoon Lee;Ok Ja Cha;Bon-Su Lee
    • Bulletin of the Korean Chemical Society
    • /
    • v.11 no.1
    • /
    • pp.49-54
    • /
    • 1990
  • The gas-phase thermolysis reactions of ${\alpha}$- and ${\beta}$-methylated ethyl formates, Y = $CH-X-CHR_1CH_2R_2$ where X = Y = O or S and $R_1\;=\;R_2$ = H or $CH_3$, are investigated theoretically using the AM1 method. The experimental reactivity order is reproduced correctly by AM1 in all cases. The thermolysis proceeds through a six-membered cyclic transition state conforming to a retro-ene reaction, which can be conveniently interpreted using the frontier orbital theory of three-species interactions. The methyl group substituted at $C_{\alpha}\;or\;C_{\beta}$ is shown to elevate the ${\pi}$-HOMO of the donor fragment (Y = C) and depress the ${\sigma}^{\ast}$-LUMO of the acceptor fragment ($C_{\beta}$-H), increasing the nucleophilicity of Y toward ${\beta}$-hydrogen which in turn increases the reactivity. The two bond breaking processes of the $C_{\alpha}$-X and $C_{\beta}$-H bonds are concerted but not synchronous so that the reaction takes place in two stages as Taylor suggested. The initial cleavage of $C_{\alpha}$-X is of little importance but the subsequent scission of $C_{\beta}$-H occurs in a rate determining stage.

UNIFORMLY CONVERGENT NUMERICAL SCHEME FOR SINGULARLY PERTURBED PARABOLIC DELAY DIFFERENTIAL EQUATIONS

  • WOLDAREGAY, MESFIN MEKURIA;DURESSA, GEMECHIS FILE
    • Journal of applied mathematics & informatics
    • /
    • v.39 no.5_6
    • /
    • pp.623-641
    • /
    • 2021
  • In this paper, numerical treatment of singularly perturbed parabolic delay differential equations is considered. The considered problem have small delay on the spatial variable of the reaction term. To treat the delay term, Taylor series approximation is applied. The resulting singularly perturbed parabolic PDEs is solved using Crank Nicolson method in temporal direction with non-standard finite difference method in spatial direction. A detail stability and convergence analysis of the scheme is given. We proved the uniform convergence of the scheme with order of convergence O(N-1 + (∆t)2), where N is the number of mesh points in spatial discretization and ∆t is mesh length in temporal discretization. Two test examples are used to validate the theoretical results of the scheme.