• Title/Summary/Keyword: Taxonomical key

Search Result 22, Processing Time 0.015 seconds

Applying IUCN Regional/National Red List Criteria to the Red List (Vascular Plants) Published by the Ministry of Environment of Korea (환경부 적색목록(관속식물)에 대한 IUCN 지역적색목록 평가적용)

  • Chang, Chin-Sung;Kwon, Shin-Young;Son, Sungwon;Shin, Hyuntak;Kim, Hui
    • Journal of Korean Society of Forest Science
    • /
    • v.109 no.4
    • /
    • pp.371-381
    • /
    • 2020
  • The Ministry of Environment (ME) is planning to adopt in 2020 the IUCN regional Red List for "Guidelines for listing and delisting rare & endangered species and management of endangered Species System". The ME designated 377 species of vascular plants on the regional Red List. In a previous study it had been suggested that 103 species from this list are candidates for the regional Red List. With respect to a possible Red List, we assessed 59 species (after excluding 34 additional NA species and ten endemic species). These assessments indicated that 16 species are at the "threatened" level. Of those, one species is Critically Endangered, ten are Endangered, and five are Vulnerable. A further four species are classified as Near Threatened, 30 as Of Least Concern, and nine as Data Deficient. We found that most of the assessments proposed by the Ministry of Environment were not supported by scientific data, including quantitative geographic data (over 70%) in Criteria B. In order to determine the endangered species belonging to the orchid family, it is necessary to obtain records of illegal activities or data on overcollection. The current problem with the Ministry of Environment Red List has been the lack of management of scientific data on species showing a trend in decreasing population in the mid- to long-term; thus, there is a lack of critical resources for policy-makers. The ME legally designated categories and assessment, and the lack of expertise in failing to comply with the legal law by itself. The key to presenting an accurate overview of the state of Korean flora is to fill the information gaps with respect to significant geographical and taxonomical biases in the quality and quantity of data. By regularly updating the qualified data, we will be able to track the changes in the conservation status of the flora and inform the necessary conservation policies.

Taxonomical Classification and Genesis of Jeju Series in Jeju Island (제주도 토양인 제주통의 분류 및 생성)

  • Song, Kwan-Cheol;Hyun, Byung-Geun;Moon, Kyung-Hwan;Jeon, Seung-Jong;Lim, Han-Cheol;Lee, Shin-Chan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.230-236
    • /
    • 2010
  • Jeju Island is a volanic island which is located about 96 km south of Korean Peninsula. Volcanic ejecta, and volcaniclastic materials are widespread as soil parent materials throughout the island. Soils on the island have the characteristics of typical volcanic ash soils. This study was conducted to reclassify Jeju series based on the second edition of Soil Taxonomy and to discuss the formation of Jeju series in Jeju Island. Morphological properties of typifying pedon of Jeju series were investigated, and physico-chemical properties were analyzed according to Soil survey laboratory methods manual. The typifying pedon has dark brown (10YR 3/3) silt clay loam A horizon (0~22 cm), strong brown (7.5YR 4/6) silty clay BAt horizon (22~43 cm), brown (7.5YR 4/4) silty clay Bt1 horizon (43~80 cm), brown (7.5YR 4/6) silty clay loamBt2 horizon (80~105 cm), and brown (10YR 5/4) silty clay loam Bt3 horizon (105~150 cm). It is developed in elevated lava plain, and are derived from basalt, and pyroclastic materials. The typifying pedon contains 1.3~2.1% oxalate extractable (Al + 1/2 Fe), less than 85%phosphate retention, and higher bulk density than 0.90 Mg $m^{-3}$. That can not be classified as Andisol. But it has an argillic horizon from a depth of 22 to 150 cm, and a base saturation (sum of cations) of less than 35% at 125 cm below the upper boundary of the argillic horizon. That can be classified as Ultisol, not as Andisol. Its has 0.9% or more organic carbon in the upper 15 cm of the argillic horizon, and can be classified as Humult. It dose not have fragipan, kandic horizon, sombric horizon, plinthite, etc. in the given depths, and key out as Haplohumult. A hoizon (0~22 cm) has a fine-earth fraction with both a bulk density of 1.0 Mg $cm^{-3}$ or less, and Al plus 1/2 Fe percentages (by ammonium oxalate) totaling more than 1.0. Thus, it keys out as Andic Haplohumult. It has 35% or more clay at the particle-size control section, and has thermic soil temperature regime. Jeju series can be classified as fine, mixed, themic family of Andic Haplohumults, not as ashy, thermic family of Typic Hapludands. In the western, and northern coastal areas which have a relatively dry climate in Jeju Island, non Andisols are widely distributed. Mean annual precipitation increase 110 mm, and mean annual temperature decrease $0.8^{\circ}C$ with increasing elevation of 100m. In the western, and northern mid-mountaineous areas Andisols, and non Andisols are distributed simultaneously. Jeju series distributed mainly in the western and northern mid-mountaineous areas are developed as Ultisols with Andic subgroup.