• Title/Summary/Keyword: Taxol$^{(R)}$

Search Result 17, Processing Time 0.025 seconds

Taxol Production in Taxus spp. Cell Culture : Semisynthesis of Taxol from Baccatin III in Cell Cultures of Taxus baccta Pendula (주목 세포배양에 의한 Taxol 생산 : 유럽 주목의 세포배양에서 추출한 Baccatin III로부터 Taxol의 반합성)

  • 전정욱;조병관
    • KSBB Journal
    • /
    • v.11 no.3
    • /
    • pp.263-269
    • /
    • 1996
  • Anticancer agent taxol was synthesized from baccatin III which was extracted from cell cultures of European yew, Taxus baccata Pendula. Callus and suspension cultures of T. baccata Pendula showed the formation baccatin III. The content of baccatin III in cell cultures reached 0.015% (w/w) on dry weight basis. The semisynthetic approaches were made with baccatin III and taxol side chain. To prepare taxol side chain, (-)-N-((S)-2-hydroxy-1-phenylethyl) benzamide was synthesized first from (S)-(+)-phenylglycine. Then (-)-N-((IS,2S)-2-hydroxy-1-phenyl-3-butenyl) benzamide was synthesized with vinyl magnesium bromide. The synthesis of (2R, 3S)-(-)-2-(1-ethoxyethoxy)-3-phenyl-3-(phenylmethanamido) propanoic acid with RuCl3, catalyst was the final step to prepare taxol side chain. The semisynthetic reactions yielded 0.0002% taxol, 0.0005% 7-epi-10-deacetyltaxol, and unidentified taxanes on dry weight basis. It is suggested that the semisynthesis of taxol from baccatin III could be an alternative source of taxol and related taxanes.

  • PDF

Effects of taxol and ionizing radiation on cytotoxicity and prostaglandin production in KB, RPMI-2650, SW-13 and L929 (수종과 암세포주와 섬유모세포주에서 taxol과 전리방사선이 세포독성과 prostaglandin생성에 미치는 영향)

  • Lee Keon-Il;You Dong-Soo
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.28 no.1
    • /
    • pp.127-143
    • /
    • 1998
  • The author evaluated the effects of taxol, a microtubular inhibitor, as a possible radiation sensitizer and the production of prostaglandins on three human cancer cell lines(KB, RPMI-2650 and SW-13) and one murine cell line(L929). Each cell line was divided into four groups (control, taxol only, radiation only and combination of taxol and radiation). The treatment consisted of a single irradiation of 10Gy and graded doses (5, 50, 100, 200, 300, 500 nM) of taxol for a 24-h period. The cytotoxicity of taxol alone was measured at 1 day after(1-day group) and 4 days after(4-day group) the treatment. The survival ratio of cell was analyzed by MTT (3-(4,5-dimethylthiazol-2-yl) -2,5-dimethyl tetrazolium bromide) test. Prostaglandins(PGE2 and PGI2) were measured in the culture medium by a radioimmunoassay. The results obtained were as follows. 1. There was a significantly increased cytotoxicity of KB cells in 4-day group than those in I-day group. There was a high correlation between doses of taxol and cell viability in both groups(l-day group R=0.82741, 4-day group R=0.84655). 2. There was a significantly increased cytotoxicity of RPMI -2650 cells treated with high concentration of taxol in 4-day group than those in I-day group. Also there was a high correlation between doses of taxol and cell viability in 4-day group(R=0.93917). 3. There was a significantly increased cytotoxicity of SW-13 cells treated with high concentration of taxol in 4-day group than those in 1-day group. However no high correlation was observed between doses of taxol and cell viability in both groups(1-day group R=0.46362, 4-day group R=0.65425). 4. There was a significantly increased cytotoxicity of L929 cells treated with low concentration of taxol in 4-day group than those in 1-day group. At the same time, there was a low correlation between doses of taxol and cell viability in both groups(1-day group R=0.34237, 4-day group R=0.23381). 5. In I-day group of L929 cells, higher cytotoxicities were observed in the groups treated with 500 nM taxol than given 10 Gy radiation alone. L929 cells in I-day group alone showed a radiosensitizing effect by taxol.. 6. In addition to L929 cells, all cancer cells treated with a combination of taxol and radiation in 4-day group appeared to have some fragmented nuclei and to float on the medium. In addition, L929 cells appeared to be more confluent. 7. The level of PGE2 production was the highest in the contol KB cells. This appeared to increase in every experimental group of all three cancer cells except L929 cells. There was a significantly increased production of PGE2 in SW -13 cells treated with a combination taxol and radiation compared to the other experimental groups. 8. The level of PGE2 production in the control group of RPMI-Z650 cells was the highest. This appeared to increase in every experimental group of all cells except in SW-13 cells. This also increased significantly in RPMI-2650 cells treated with a combination of taxol and radiation compared to the other experimental groups.

  • PDF

GENE EXPRESSION PATTERNS INDUCED BY $TAXOL^{(R)}$ AND CYCLOSPORIN A IN ORAL SQUAMOUS CELL CARCINOMA CELL LINE USING CDNA MICROARRAY (cDNA Microarray를 이용한 구강편평세포암종 세포주에서 $Taxol^{(R)}$과 Cyclosporin A로 유도된 유전자 발현양상)

  • Kim, Yong-Kwan;Lee, Jae-Hoon;Kim, Chul-Hwan
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.3
    • /
    • pp.202-212
    • /
    • 2006
  • It is well-known that paclitaxel($Taxol^{(R)}$), which is extracted from the pacific and English yew, has been used as a chemotherapeutic agent for ovarian carcinoma and advanced breast carcinoma and Cyclosporin A, which is highly lipophilic cyclic peptide and isolated from a fungus, has been also used as an useful immunosuppressive drug after transplantation and is associated with cellular apoptosis. Since 1953, in which James Watson, Rosalind Franklin and Francis Crick discovered the double helical structure of DNA, a few kinds of techniques for identifying gene expression have been developed. In postgenomic period, many of researchers have used the DNA microarray which is high throughput screening technique to screen large numbers of gene expression simultaneously. In this study, we searched and screened the gene expression in the oral squamous cell carcinoma cell lines treated with $Taxol^{(R)}$, cyclosporin or cyclosporin combined with $Taxol^{(R)}$ using cDNA microarray. The results were as following; 1. It was useful that the appropriate concentration of Cyclosporin A and $Taxol^{(R)}$ used in oral squamous cell carcinoma cell line was under 1${\mu}g/ml$ and 3${\mu}g/ml$. 2. In the experimental group in which $Taxol^{(R)}$ and $Taxol^{(R)}$ + Cyclosporin A were used, the cell growth was extremely decreased. 3. In the group in which Cyclosporin A was used, the MTT assay was rarely decreased which means the activity of succinyl dehydrogenase is remained in mitochondria but in the group in which the mixture of Cyclosporin A and $Taxol^{(R)}$ were used, the MTT assay was extremely decreased. 4. In the each group in which Cyclosporin A(3 ${\mu}g/ml$) and $Taxol^{(R)}$(1 ${\mu}g/ml$) were used, the cell arrest was appeared in $G_2/M$ phase and in the group in which $Taxol^{(R)}$(3 ${\mu}g/ml$) was used, the cell arrest was appeared in both S phase and $G_2/M$ phase. 5. In the oral squamous cell carcinoma cell line treated with $Taxol^{(R)}$, several genes including ANGPTL4, RALBP1 and TXNRD1, associated with apoptosis, SUI1, MAC30, RRAGA and CTGF, related with cell growth, HUS1 and DUSP5, related with cell cycle and proliferation, ATF4 and CEBPG, associated with transcription factor, BTG1 and VEGF, associated with angiogenesis, FDPS, FCER1G, GPA33 and EPHA4 associated with signal transduction and receptor activity and AKR1C2 and UGTA10 related with carcinogenesis were detected in increased levels. The genes that showed increaced expression in the oral squamous cell carcinoma cell line treated with Cyclosporin A were CYR61, SERPINB2, SSR3 and UPA3A which are known as genes associated with cell growth, carcinogenesis, receptor activity and transcription factor. The genes expressed in the HN22 cell line treated with cyclosporin combined with $taxol^{(R)}$ were ALCAM and GTSE1 associated with cancer invasiveness and cell cycle regulation.

Preparation of $^{125}I-Iodotyraminehemisuccinyltaxol\;(^{125}ITHT)$ for Competitive Taxol Radioimmunoassay (Taxol 방사면역측정을 위한 $^{125}I-Iodotyraminehemisuccinyltaxol\;(^{125}ITHT)$의 제조)

  • Lee, Tae-Sup;Awh, Ok-Doo;Choi, Tae-Hyun;Kim, Hyun-Suk;Hong, Jun-Pyo;Lee, Eun-Sook;Choi, Chang-Woon;Lim, Sang-Moo
    • The Korean Journal of Nuclear Medicine
    • /
    • v.36 no.2
    • /
    • pp.121-132
    • /
    • 2002
  • Purpose : Taxol(Paclitaxel), an antineoplastic agent, has been used in the treatment of ovarian and breast cancers. The determination of optimal Taxol concentrations in human serum was required for enhancing therapeutic effect and maintaining the appropriate Taxol level in blood. This study was aimed to synthesizeradiolabeled Taxol derivatives as radiotracer in competitive radioimmunoassay for monitoring Taxol concentrations in blood and to determine the usefulness of its derivatives. Materials and Methods : Hemisucdcinyltaxol(HT) was synthesized by esterification of Taxol with succinic anhydride. Tyraminehemisuccinyltaxol(THT) was synthesized by coupling of HT with tyramine using isobutylchlormate as coupling agent and purified by HPLC. By using chloramine-T($5.25mg/ml,\;10{\mu}{\ell}$) as oxidant agent, THT($4mg/ml,\;30{\mu}{\ell}$) was labeled wity $^{125}I\;(37MBq,\;1mCi)$. To estimate the stability of purified THT, $^{125}I-iodotyraminehemisuccinyltaxol(^125}ITHT)$ was dissolved in 80% acetonitrile aqueous solution, and the solution was incubated at $4^{\circ}C\;and\;37^{\circ}C$ for 7 days. At various time intervals, the stability of THT and $^{125}ITHT$ was monitored. The titer of Taxol monoclonal antibody, 3G5A7, was determined by competitive radioimmunoassay using $^{125}ITHT$ as a labeled antigen. A standard dose-response curve was demonstated by Taxol competitive radioimmunoassay. Resulls : HT and THT were synthesized with 79.9% and 19.5% yield, respectively. The labeling yield of $^{125}ITHT$ was 93%. After 7 days, the chemical purity of THT was 96.5% at $4^{\circ}C$, and 97.5% at $37^{\circ}C$. After 3 days, $^{125}ITHT$ was stable with 94.7% at $4^{\circ}C$ and 93.4% at $37^{\circ}C$. After 7 days, fadiochemical purity was diminished to 88.1% at $37^{\circ}C$. The titer of Taxol monoclonal antibody, 3G5A7, was determined to 1:256. A standard dose-response curve demonstated good collinearity ($R^2=0.971$) as Taxol concentration-dependent manner. Conclusion : Competitive radioimmunoassay using $^{125}I-iodotyraminehemisuccinytaxol$ as radiotracer could be used to monitor for concentration of Taxol in the human serum.

Molecular and Morphological Characterization of a Taxol-Producing Endophytic Fungus, Gliocladium sp., from Taxus baccata

  • Sreekanth, D.;Sushim, G.K.;Syed, A.;Khan, B.M.;Ahmad, A.
    • Mycobiology
    • /
    • v.39 no.3
    • /
    • pp.151-157
    • /
    • 2011
  • The endophytic fungal populations of different tissues of Taxus baccata grown at high altitudes in West Bengal, India were explored. These isolated fungal populations represented different genera, which were screened for taxol production using immunoassay technique. The culture AAT-TS-$4_1$ that produced taxol was identified as Gliocladium sp. based on its cultural, morphological characteristics, internal transcribed spacer, and 18S rRNA sequence analysis. Kinetics of taxol production as a function of culture growth were investigated.

Pharmacokinetics and Oral Bioavailability of Paclitaxel Microemulsion in Rats

  • Hur, Hye-Jung;Park, Joon-Hee;Kim, Seo-Young;Yang, Hyun-Kyoung;Kim, Ji-Hyeon;Ryu, Jae-Kook;Woo, Jong-Soo;Lee, Byung-Koo;Lee, Hwa-Jeong
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.5
    • /
    • pp.331-334
    • /
    • 2008
  • The objectives of this study were to formulate oral paclitaxel microemulsion and to compare the bioavailability of paclitaxel in the microemulsion formulation from the commercially available $Taxol^{(R)}$ formulation. Paclitaxel microemulsion was formulated with much less amount of Cremophor $EL^{TM}$ as compared with $Taxol^{(R)}$ to reduce severe adverse reactions produced by Cremophor $EL^{TM}$. The area under the plasma concentration-time curve from 0 hr to 24 hr ($AUC_{0-24}$), maximum plasma concentration ($C_{max}$), and relative bioavailability of palcitaxel microemulsion were increased as compared with $Taxol^{(R)}$ after oral administration. The time required to reach $C_{max}\;(T_{max})$ of palcitaxel microemulsion was significantly shorter than $Taxol^{(R)}$ following oral administration. These results suggest the faster intestinal absorption and the enhanced oral bioavailability of paclitaxel in the microemulsion formulation.

Pharmacokinetic Behavior and Biodistribution of Paclitaxel-Loaded Lipid Nanosuspension

  • Choi, Sung-Up;Park, Jung-Min;Choi, Woo-Sik;Lee, Jae-Hwi;Choi, Young-Wook
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.359-366
    • /
    • 2009
  • In this study, paclitaxel-loaded lipid nanosuspension (PxLN) was prepared and the in vivo profiles after intravenous administration in rats were investigated. We compared the manufacturing processes depending on the temperature: PxLN-H for a hot homogenization process and PxLN-C for solidification of lipid-drug mixtures by liquid nitrogen. Both formulations showed submicron size distribution and the similar drug loading efficiency of about 70%. In vitro release of PxLNs and Taxol$^{(R)}$ performed by a dialysis diffusion method showed similar pattern for PxLN-H and Taxol$^{(R)}$, but the reduced release profile for PxLN-C. PxLN or Taxol$^{(R)}$ was intravenously administered to the rats at a dose of 5 mg/kg as paclitaxel. The drug in blood samples were assayed by the HPLC/MS/MS method. The AUC$_t$ of PxLN-H was 3.4-fold greater than that of Taxol$^{(R)}$. PxLN-H gave higher biodistribution in all tissues than did Taxol$^{(R)}$. In addition, it maintained the higher drug concentration for 12 h. This lipid nanosuspension might be a promising candidate for an alternative formulation for the parenteral delivery of poorly water-soluble paclitaxel.

THE ANTICANCER EFFECT OF PACLITAXEL($Taxol^{(R)}$) IN ORAL SQUAMOUS CELL CARCINOMA XENOGRAFT (이종 이식된 구강편평세포 암종에서 Paclitaxel ($Taxol^{(R)}$)의 항암 효과)

  • Kim, Ki-Hwan;Kim, Chul-Hwan;Han, Se-Jin;Lee, Jae-Hoon
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.2
    • /
    • pp.95-110
    • /
    • 2006
  • The treatment for oral and maxillofacial carcinoma with chemotherapeutic agents is evaluated by many effective methods to reduce the tumor mass and cancer cell proliferation. However these chemotherapy have many serious side effects, such as bone marrow suppression, renal toxicity, G-I troubles. Therefore a possible approach to develop a clinically applicable chemotherapeutic agent is to screen anticancer activity of Taxol which is known to have very little side effect and have been used to breast cancer and ovarian carcinoma. Taxol is a new anti-microtubular anti-cancer agent extracted from the bark of the Pacific yew, Taxus brevifolia. Paclitaxel(Taxol) acts by promoting tubulin polymerization and over stabilizing microtubules agianst depolymerization. Despite the constant improvements of methods of the cancer treatment especially chemotherapy, the rate of cancer metastasis and recurrent are not decreased. Thus the investigation of new drug which have very little side effect and a possible clinically application continues to be a high priority. Considering that the Taxol have shown very effective chemotherapeutic agent with relatively low toxicity in many solid tumors, it deserves to evaluate its efficacy in oral squamous cell carcinoma. In this study, to investigate the in-vivo and in-vitro anti-cancer efficacy of Taxol in oral squamous cell carcinoma and lastly, the potency of Paclitaxel in the clinical application for oral cancer was evaluated. In vivo study, after HN22 cell line were xenografted in nude mice, the growth of tumor mass was observed, 3 mg/Kg taxol was injected intraperitoneally into nude mice containing tumor mass. The methods of these study were measurement of total volume of tumor mass, histopathologic study, immunohistochemical study, drug resistance assay, growth curve, MTT assay, flow cytometry, cDNA microarray in vivo and in vitro. The results were obtained as following. 1. The visual inspection of the experimental group showed that the volume of the tumor mass was slightly decreased but no significant difference with control group. 2. Ki-67 index was decreased at weeks 4 in experimental group. 3. Microscopic view of the xenografted tumor mass showed well differentiated squamous cell carcinoma and after Taxol injection, some necrotic tissue was seen weeks 4. 4. The growth curve of the tumor cells were decreased after 1day Taxol treatment. 5. According to the MTT assay, HN22 cell line showed relative drug resistancy above $5\;{\mu}g/ml$ concentrations of Taxol. 6. In drug resistance assay, the decrease of cell counts was seen relatively according to concentration. 7. In Flow cytometry, G2M phase cell arrests were seen in low concentration of the Taxol, while S phase cell arrests were seen in high concentration of the Taxol. 8. Using cDNA microarray technique, variable gene expression of ANGPTL4, TXNRD1, FAS, RRAGA, CTGF, CYCLINEA, P19, DUSP5, CEBPG, BTG1 were detacted in the oral squamous cell carcinoma cell after taxol treatment. In this study paclitaxel is effective against oral squamous cell carcinoma cell lines in vitro, but week effect was observed in vivo. So we need continuous study about anticancer effect of taxol in vivo in oral squamous cell carcinoma.

Preparation and Evaluation of Paclitaxel Solid Dispersion by Supercritical Antisolvent Process (초임계유체를 이용한 파클리탁셀고체분산체의 제조 및 평가)

  • Park, Jae-Hyun;Chi, Sang-Cheol;Woo, Jong-Soo
    • Journal of Pharmaceutical Investigation
    • /
    • v.38 no.4
    • /
    • pp.241-247
    • /
    • 2008
  • Paclitaxel is a taxane diterpene amide, which was first extracted from the stem bark of the western yew, Taxus brevifolia. This natural product has proven to be useful in the treatment of a variety of human neoplastic disorders, including ovarian cancer, breast and lung cancer. Paclitaxel is a highly hydrophobic drug that is poorly soluble in water. It is mainly given by intravenous administration. Therefore, The pharmaceutical formulation of paclitaxel ($Taxol^{(R)}$; Bristol-Myers Squibb) contains 50% $Cremophor^{(R)}$ EL and 50% dehydrated ethanol. However the ethanol/Cremophor EL vehicle required to solubilize paclitaxel in $Taxol^{(R)}$ has a pharmacological and pharmaceutical problems. To overcome these problems, new formulations for paclitaxel that do not require solubilization by $Cremophor^{(R)}$ EL are currently being developed. Therefore this study utilized a supercritical fluid antisolvent (SAS) process for cremophor-free formulation. To select hydrophilic polymers that require solubilization for paclitaxel, we evaluated polymers and the ratio of paclitaxel/polymers. HP-${\beta}$-CD was used as a hydrophilic polymer in the preparation of the paclitaxel solid dispersion. Although solubility of paclitaxel by polymers was increased, physical stability of solution after paclitaxel/polymer powder soluble in saline was unstable. To overcome this problem, we investigated the use of surfactants. At 1/20/40 of paclitaxel/hydrophilic polymer/ surfactant weight ratio, about 10 mg/mL of paclitaxel can be solubilized in this system. Compared with the solubility of paclitaxel in water ($1\;{\mu}g/mL$), the paclitaxel solid dispersion prepared by SAS process increased the solubility of paclitaxel by near 10,000 folds. The physicochemical properties was also evaluated. The particle size distribution, melting point and amophorization and shape of the powder particles were fully characterized by particle size distribution analyzer, DSC, SEM and XRD. In summary, through the SAS process, uniform nano-scale paclitaxel solid dispersion powders were obtained with excellent results compared with $Taxol^{(R)}$ for the physicochemical properties, solubility and pharmacokinetic behavior.