• Title/Summary/Keyword: Tate-Distortion

Search Result 2, Processing Time 0.015 seconds

An Efficient Polygonal Approximation Method in the Rate-Distorion Sense (비트량-왜곡을 고려한 효율적인 다각형 근사화 기법)

  • 윤병주;고윤호;김성대
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.1
    • /
    • pp.114-123
    • /
    • 2003
  • This paper proposes an efficient method for encoding the shape information of the object in the image. The polygonal approximation method is categorized into a loss coding method and is widely used for approximating object's shape information. The proposed method selects less number of vertices than IRM (iterated refinement method) or PVS (progressive vertex selection) when the maximum distortion is given, so reduces the bit-rates. The proposed method selects the vertices of a polygon with a simple and efficient method considering the rate-distortion sense. We construct the shape information coder, which shows the outstanding performance in the rate-distortion sense, based on the conventional progressive vertex selection method and the new vertex selection condition that we propose in this paper. Simulation results show that the proposed method has better performance than other conventional vertex selection methods in the tate-distortion sense.

MPEG-4 Rate Control Method with Spatio-Temporal Trade-Offs (시공간 화질의 절충을 고려한 MPEG-4 비트율 제어 알고리즘)

  • Lee Jeong-Woo;Ho Yo-Sung
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.41 no.1
    • /
    • pp.47-56
    • /
    • 2004
  • This paper describes a new bit allocation algorithm that can achieve a constant bit rate when coding multiple video objects, while improving rate-distortion (R-D) performance over the VM5 method for MPEG-4 object-based video coding. In particular, we propose two models to estimate the rate-distortion characteristics of coded objects as well as skipped objects. Based on the proposed models, we present several R-D coding modes with spatio-temporal trade-offs to improve coding efficiency. The proposed algorithm is performed at the object level for object-based video coding. Simulation results demonstrate moderate improvement at low as well as high bit rates. The proposed algorithm can produce the actual coded bits very close to the target bits over a wide range of bit rates. Consequently, the proposed algerian has not experienced any buffer overflow or underflow over the bit rates between 32 kbps and 256 kbps.