• Title/Summary/Keyword: Tasseled-cap Transformation model

Search Result 5, Processing Time 0.02 seconds

GENERATION OF AN IMPERVIOUS MAP BY APPLYING TASSELED-CAP ENHANCEMENT USING KOMPSAT-2 IMAGE

  • Koh, Chang-Hwan;Ha, Sung-Ryong
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.378-381
    • /
    • 2008
  • The regulating and relaxing targets in the Land Use Regulation and Total Maximum Daily Loads are influenced by Land cover information. For the providing more accurate land information, this study attempted to generate an impervious surface map using KOMPSAT-2 image which a Korea manufactured high resolution satellite image. The classification progress of this study carried out by tasseled-cap spectral enhancement through each class extraction technique neither existing classification method. KOMPSAT-2 image of this study is enhanced by Soil Brightness Index(SBI), Green vegetation Index(GVI), None-Such wetness Index(NWI). Then ranges of extracted each index in enhanced image are determined. And then, Confidence Interval of classes was determined through the calculating Non-exceedance Probability. Spectral distributions of each class are changed according to changing of Control coefficient(${\alpha}$) at the calculated Non-exceedance Probability. Previously, Land cover classification map was generated based on established ranges of classes, and then, pervious and impervious surface was reclassified. Finally, impervious ratio of reclassified impervious surface map was calculated with blocks in the study area.

  • PDF

AGE ESTIMATION TECHNIQUE OF INDUSTRIALIZED TIMBER PLANTATION USING VARIOUS REMOTE SENSING DATA

  • Kim, Jong-Hong;Heo, Joon;Park, Ji-Sang
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.94-97
    • /
    • 2006
  • Timber stand age information of timber in industrialized plantation forest is generally collected by field surveying which is labor-intensive, time-consuming, and very costly. It is also inconsistent in analyses perspective. As an alternative, The objective of this research is to present a practical solution for estimating timber age of loblolly pine plantation using Landsat thematic mapper (TM) images, shuttle radar topography mission (SRTM), and national elevation dataset (NED). A multivariate regression model was developed based upon satellite image-based information (i.e.normalized difference vegetation index (NDVI), tasseled cap (TC) transformation, and derived tree heights). A residual studentized technique was applied to remove potential outliers. After that, a refined age estimation model with a correlation coefficient R-square of 84.6% was obtained. Finally, the feasibility test of estimated model was performed by comparing estimated and measured stand ages of timber plantations using test datasets of plantation stands (2,032 stands). The result shows that the proposed method of this study can estimate loblolly pine stand age within an error of $2{\sim}3$ years in an effective and consistent way in terms of time and cost.

  • PDF

Study on Correlation Between Timber Age, Image Bands and Vegetation Indices for Timber Age Estimation Using Landsat TM Image (Landsat TM 영상을 이용한 교목연령 추정에 영창을 주는 영상 밴드 및 식생지수에 관한 연구)

  • Lee, Jung-Bin;Heo, Joon;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.6
    • /
    • pp.583-590
    • /
    • 2008
  • This study presents a correlation between timber Age, image bands and vegetation indices for timber age estimation. Basically, this study used Landsat TM images of three difference years (1994, 1994, 1998) and difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED). Bands of 4, 5 and 7, Normalized Difference Vegetation Index (NDVI), Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SA VI) were obtained from Landsat TM images. Tasseled cap - greenness and wetness images were also made by Tasseled cap transformation. Finally, analysis of correlation between timber age, difference between Shuttle Radar Topography Mission (SRTM) and National Elevation Dataset (NED), individual TM bands (4, 5, 7), Normalized Difference Vegetation Index (NDVI), Tasseled cap-Greenness, Wetness, Infrared Index (II), Vegetation Condition Index (VCI) and Soil Adjusted Vegetation Index (SAVI) using regression model. In this study about 1,992 datasets were analyzed. The Tasseled cap - Wetness, Infrared Index (II) and Vegetation Condition Index (VCI) showed close correlation for timber age estimation.

Extraction of Soil Wetness Information and Application to Distribution-Type Rainfall-Runoff Model Utilizing Satellite Image Data and GIS (위성영상자료와 GIS를 활용한 토양함수정보 추출 및 분포형 강우-유출 모형 적용)

  • Lee, Jin-Duk;Lee, Jung-Sik;Hur, Chan-Hoe;Kim, Suk-Dong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.3
    • /
    • pp.23-32
    • /
    • 2011
  • This research uses a distributed model, Vflo which can devide subwater shed into square grids and interpret diverse topographic elements which are obtained through GIS processing. To use the distributed model, soil wetness information was extracted through Tasseled Cap transformation from LANDSAT 7 $ETM^+$ satellite data and then they were applied to each cell of the test area, unlike previous studies in which have applied average soil condition of river basin uniformly regardless of space-difference in subwater shed. As a resut of the research, it was ascertained the spatial change of soil wetness is suited to the distributed model in a subwater shed. In addition, we derived out a relation between soil wetness of image collection time and 10 days-preceded rainfall and improved the feasibility of weights obtained by the relation equation.

Impervious Surface Estimation of Jungnangcheon Basin Using Satellite Remote Sensing and Classification and Regression Tree (위성원격탐사와 분류 및 회귀트리를 이용한 중랑천 유역의 불투수층 추정)

  • Kim, Sooyoung;Heo, Jun-Haeng;Heo, Joon;Kim, SungHoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6D
    • /
    • pp.915-922
    • /
    • 2008
  • Impervious surface is an important index for the estimation of urbanization and the assessment of environmental change. In addition, impervious surface influences on short-term rainfall-runoff model during rainy season in hydrology. Recently, the necessity of impervious surface estimation is increased because the effect of impervious surface is increased by rapid urbanization. In this study, impervious surface estimation is performed by using remote sensing image such as Landsat-7 ETM+image with $30m{\times}30m$ spatial resolution and satellite image with $1m{\times}1m$ spatial resolution based on Jungnangcheon basin. A tasseled cap transformation and NDVI(normalized difference vegetation index) transformation are applied to Landsat-7 ETM+ image to collect various predict variables. Moreover, the training data sets are collected by overlaying between Landsat-7 ETM+ image and satellite image, and CART(classification and regression tree) is applied to the training data sets. As a result, impervious surface prediction model is consisted and the impervious surface map is generated for Jungnangcheon basin.