• Title/Summary/Keyword: Task Duplication(TD)

Search Result 2, Processing Time 0.017 seconds

Duplication with Task Assignment in Mesh Distributed System

  • Sharma, Rashmi;Nitin, Nitin
    • Journal of Information Processing Systems
    • /
    • v.10 no.2
    • /
    • pp.193-214
    • /
    • 2014
  • Load balancing is the major benefit of any distributed system. To facilitate this advantage, task duplication and migration methodologies are employed. As this paper deals with dependent tasks (DAG), we used duplication. Task duplication reduces the overall schedule length of DAG along-with load balancing. This paper proposes a new task duplication algorithm at the time of tasks assignment on various processors. With the intention of conducting proposed algorithm performance computation; simulation has been done on the Netbeans IDE. The mesh topology of a distributed system is simulated at this juncture. For task duplication, overall schedule length of DAG is the main parameter that decides the performance of a proposed duplication algorithm. After obtaining the results we compared our performance with arbitrary task assignment, CAWF and HEFT-TD algorithms. Additionally, we also compared the complexity of the proposed algorithm with the Duplication Based Bottom Up scheduling (DBUS) and Heterogeneous Earliest Finish Time with Task Duplication (HEFT-TD).

Efficient Duplication Based Task Scheduling with Communication Cost in Heterogeneous Systems (이질 시스템에서 통신 시간을 고려한 효율적인 복제 기반 태스크 스케줄링)

  • Yoon, Wan-Oh;Baek, Jueng-Kuy;Shin, Kwang-Sik;Cheong, Jin-Ha;Choi, Sang-Bang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.3C
    • /
    • pp.219-233
    • /
    • 2008
  • Optimal scheduling of parallel tasks with some precedence relationship, onto a parallel machine is known to be NP-complete. The complexity of the problem increases when task scheduling is to be done in a heterogeneous environment, where the processors in the network may not be identical and take different amounts of time to execute the same task. This paper introduces a Duplication based Task Scheduling with Communication Cost in Heterogeneous Systems (DTSC), which provides optimal results for applications represented by Directed Acyclic Graphs (DAGs), provided a simple set of conditions on task computation and network communication time could be satisfied. Results from an extensive simulation show significant performance improvement from the proposed techniques over the Task duplication-based scheduling Algorithm for Network of Heterogeneous systems(TANH) and General Dynamic Level(GDL) scheduling algorithm.