• Title/Summary/Keyword: Target material

Search Result 1,373, Processing Time 0.026 seconds

Animal Infectious Diseases Prevention through Big Data and Deep Learning (빅데이터와 딥러닝을 활용한 동물 감염병 확산 차단)

  • Kim, Sung Hyun;Choi, Joon Ki;Kim, Jae Seok;Jang, Ah Reum;Lee, Jae Ho;Cha, Kyung Jin;Lee, Sang Won
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.137-154
    • /
    • 2018
  • Animal infectious diseases, such as avian influenza and foot and mouth disease, occur almost every year and cause huge economic and social damage to the country. In order to prevent this, the anti-quarantine authorities have tried various human and material endeavors, but the infectious diseases have continued to occur. Avian influenza is known to be developed in 1878 and it rose as a national issue due to its high lethality. Food and mouth disease is considered as most critical animal infectious disease internationally. In a nation where this disease has not been spread, food and mouth disease is recognized as economic disease or political disease because it restricts international trade by making it complex to import processed and non-processed live stock, and also quarantine is costly. In a society where whole nation is connected by zone of life, there is no way to prevent the spread of infectious disease fully. Hence, there is a need to be aware of occurrence of the disease and to take action before it is distributed. Epidemiological investigation on definite diagnosis target is implemented and measures are taken to prevent the spread of disease according to the investigation results, simultaneously with the confirmation of both human infectious disease and animal infectious disease. The foundation of epidemiological investigation is figuring out to where one has been, and whom he or she has met. In a data perspective, this can be defined as an action taken to predict the cause of disease outbreak, outbreak location, and future infection, by collecting and analyzing geographic data and relation data. Recently, an attempt has been made to develop a prediction model of infectious disease by using Big Data and deep learning technology, but there is no active research on model building studies and case reports. KT and the Ministry of Science and ICT have been carrying out big data projects since 2014 as part of national R &D projects to analyze and predict the route of livestock related vehicles. To prevent animal infectious diseases, the researchers first developed a prediction model based on a regression analysis using vehicle movement data. After that, more accurate prediction model was constructed using machine learning algorithms such as Logistic Regression, Lasso, Support Vector Machine and Random Forest. In particular, the prediction model for 2017 added the risk of diffusion to the facilities, and the performance of the model was improved by considering the hyper-parameters of the modeling in various ways. Confusion Matrix and ROC Curve show that the model constructed in 2017 is superior to the machine learning model. The difference between the2016 model and the 2017 model is that visiting information on facilities such as feed factory and slaughter house, and information on bird livestock, which was limited to chicken and duck but now expanded to goose and quail, has been used for analysis in the later model. In addition, an explanation of the results was added to help the authorities in making decisions and to establish a basis for persuading stakeholders in 2017. This study reports an animal infectious disease prevention system which is constructed on the basis of hazardous vehicle movement, farm and environment Big Data. The significance of this study is that it describes the evolution process of the prediction model using Big Data which is used in the field and the model is expected to be more complete if the form of viruses is put into consideration. This will contribute to data utilization and analysis model development in related field. In addition, we expect that the system constructed in this study will provide more preventive and effective prevention.

A Study on Intelligent Value Chain Network System based on Firms' Information (기업정보 기반 지능형 밸류체인 네트워크 시스템에 관한 연구)

  • Sung, Tae-Eung;Kim, Kang-Hoe;Moon, Young-Su;Lee, Ho-Shin
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.3
    • /
    • pp.67-88
    • /
    • 2018
  • Until recently, as we recognize the significance of sustainable growth and competitiveness of small-and-medium sized enterprises (SMEs), governmental support for tangible resources such as R&D, manpower, funds, etc. has been mainly provided. However, it is also true that the inefficiency of support systems such as underestimated or redundant support has been raised because there exist conflicting policies in terms of appropriateness, effectiveness and efficiency of business support. From the perspective of the government or a company, we believe that due to limited resources of SMEs technology development and capacity enhancement through collaboration with external sources is the basis for creating competitive advantage for companies, and also emphasize value creation activities for it. This is why value chain network analysis is necessary in order to analyze inter-company deal relationships from a series of value chains and visualize results through establishing knowledge ecosystems at the corporate level. There exist Technology Opportunity Discovery (TOD) system that provides information on relevant products or technology status of companies with patents through retrievals over patent, product, or company name, CRETOP and KISLINE which both allow to view company (financial) information and credit information, but there exists no online system that provides a list of similar (competitive) companies based on the analysis of value chain network or information on potential clients or demanders that can have business deals in future. Therefore, we focus on the "Value Chain Network System (VCNS)", a support partner for planning the corporate business strategy developed and managed by KISTI, and investigate the types of embedded network-based analysis modules, databases (D/Bs) to support them, and how to utilize the system efficiently. Further we explore the function of network visualization in intelligent value chain analysis system which becomes the core information to understand industrial structure ystem and to develop a company's new product development. In order for a company to have the competitive superiority over other companies, it is necessary to identify who are the competitors with patents or products currently being produced, and searching for similar companies or competitors by each type of industry is the key to securing competitiveness in the commercialization of the target company. In addition, transaction information, which becomes business activity between companies, plays an important role in providing information regarding potential customers when both parties enter similar fields together. Identifying a competitor at the enterprise or industry level by using a network map based on such inter-company sales information can be implemented as a core module of value chain analysis. The Value Chain Network System (VCNS) combines the concepts of value chain and industrial structure analysis with corporate information simply collected to date, so that it can grasp not only the market competition situation of individual companies but also the value chain relationship of a specific industry. Especially, it can be useful as an information analysis tool at the corporate level such as identification of industry structure, identification of competitor trends, analysis of competitors, locating suppliers (sellers) and demanders (buyers), industry trends by item, finding promising items, finding new entrants, finding core companies and items by value chain, and recognizing the patents with corresponding companies, etc. In addition, based on the objectivity and reliability of the analysis results from transaction deals information and financial data, it is expected that value chain network system will be utilized for various purposes such as information support for business evaluation, R&D decision support and mid-term or short-term demand forecasting, in particular to more than 15,000 member companies in Korea, employees in R&D service sectors government-funded research institutes and public organizations. In order to strengthen business competitiveness of companies, technology, patent and market information have been provided so far mainly by government agencies and private research-and-development service companies. This service has been presented in frames of patent analysis (mainly for rating, quantitative analysis) or market analysis (for market prediction and demand forecasting based on market reports). However, there was a limitation to solving the lack of information, which is one of the difficulties that firms in Korea often face in the stage of commercialization. In particular, it is much more difficult to obtain information about competitors and potential candidates. In this study, the real-time value chain analysis and visualization service module based on the proposed network map and the data in hands is compared with the expected market share, estimated sales volume, contact information (which implies potential suppliers for raw material / parts, and potential demanders for complete products / modules). In future research, we intend to carry out the in-depth research for further investigating the indices of competitive factors through participation of research subjects and newly developing competitive indices for competitors or substitute items, and to additively promoting with data mining techniques and algorithms for improving the performance of VCNS.

Comparison of CT based-CTV plan and CT based-ICRU38 plan in Brachytherapy Planning of Uterine Cervix Cancer (자궁경부암 강내조사 시 CT를 이용한 CTV에 근거한 치료계획과 ICRU 38에 근거한 치료계획의 비교)

  • Cho, Jung-Ken;Han, Tae-Jong
    • Journal of Radiation Protection and Research
    • /
    • v.32 no.3
    • /
    • pp.105-110
    • /
    • 2007
  • Purpose : In spite of recent remarkable improvement of diagnostic imaging modalities such as CT, MRI, and PET and radiation therapy planing systems, ICR plan of uterine cervix cancer, based on recommendation of ICRU38(2D film-based) such as Point A, is still used widely. A 3-dimensional ICR plan based on CT image provides dose-volume histogram(DVH) information of the tumor and normal tissue. In this study, we compared tumor-dose, rectal-dose and bladder-dose through an analysis of DVH between CTV plan and ICRU38 plan based on CT image. Method and Material : We analyzed 11 patients with a cervix cancer who received the ICR of Ir-192 HDR. After 40Gy of external beam radiation therapy, ICR plan was established using PLATO(Nucletron) v.14.2 planing system. CT scan was done to all the patients using CT-simulator(Ultra Z, Philips). We contoured CTV, rectum and bladder on the CT image and established CTV plan which delivers the 100% dose to CTV and ICRU plan which delivers the 100% dose to the point A. Result : The volume$(average{\pm}SD)$ of CTV, rectum and bladder in all of 11 patients is $21.8{\pm}6.6cm^3,\;60.9{\pm}25.0cm^3,\;111.6{\pm}40.1cm^3$ respectively. The volume covered by 100% isodose curve is $126.7{\pm}18.9cm^3$ in ICRU plan and $98.2{\pm}74.5cm^3$ in CTV plan(p=0.0001), respectively. In (On) ICRU planning, $22.0cm^3$ of CTV volume was not covered by 100% isodose curve in one patient whose residual tumor size is greater than 4cm, while more than 100% dose was irradiated unnecessarily to the normal organ of $62.2{\pm}4.8cm^3$ other than the tumor in the remaining 10 patients with a residual tumor less than 4cm in size. Bladder dose recommended by ICRU 38 was $90.1{\pm}21.3%$ and $68.7{\pm}26.6%$ in ICRU plan and in CTV plan respectively(p=0.001) while rectal dose recommended by ICRU 38 was $86.4{\pm}18.3%$ and $76.9{\pm}15.6%$ in ICRU plan and in CTV plan, respectively(p=0.08). Bladder and rectum maximum dose was $137.2{\pm}50.1%,\;101.1{\pm}41.8%$ in ICRU plan and $107.6{\pm}47.9%,\;86.9{\pm}30.8%$ in CTV plan, respectively. Therefore, the radiation dose to normal organ was lower in CTV plan than in ICRU plan. But the normal tissue dose was remarkably higher than a recommended dose in CTV plan in one patient whose residual tumor size was greater than 4cm. The volume of rectum receiving more than 80% isodose (V80rec) was $1.8{\pm}2.4cm^3$ in ICRU plan and $0.7{\pm}1.0cm^3$ in CTV plan(p=0.02). The volume of bladder receiving more than 80% isodose(V80bla) was $12.2{\pm}8.9cm^3$ in ICRU plan and $3.5{\pm}4.1cm^3$ in CTV plan(p=0.005). According to these parameters, CTV plan could also save more normal tissue compared to ICRU38 plan. Conclusion : An unnecessary excessive radiation dose is irradiated to normal tissues within 100% isodose area in the traditional ICRU plan in case of a small size of cervix cancer, but if we use CTV plan based on CT image, the normal tissue dose could be reduced remarkably without a compromise of tumor dose. However, in a large tumor case, we need more research on an effective 3D-planing to reduce the normal tissue dose.