• Title/Summary/Keyword: Target detection

Search Result 1,847, Processing Time 0.029 seconds

Maneuvering Target Tracking Using Modified Variable Dimension Filter with Input Estimation (수정된 가변차원 입력추정 필터를 이용한 기동표적 추적)

  • 안병완;최재원;황태현;송택렬
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.976-983
    • /
    • 2002
  • We presents a modified variable dimension filter with input estimation for maneuvering target tracking. The conventional variable dimension filter with input estimation(VDIE) consists of the input estimation(IE) technique and the variable dimension(VD) filter. In the VDIE, the IE technique is used for estimation of a maneuver onset time and its magnitude in the least square sense. The detection of the maneuver is declared according to the estimated magnitude of the maneuver. The VD filter structure is applied for the adaptation to the maneuver of the target after compensating the filter parameter with respect to the estimated maneuver when the detection of the maneuver is declared. The VDIE is known as one of the best maneuvering target tracking filter based on a single filter. However, it requires too much computational burden since the IE technique is performed at every sampling instance and thus it is computationally inefficient. We propose another variable dimension filter with input estimation named 'Modified VDIE' which combines VD filter with If technique. Modified VDIE has less computational load than the original one by separating maneuver detection and input estimation. Simulation results show that the proposed VDIE is more efficient and outperforms in terms of computational load.

Design of Infrared Camera for Extended Field of View (시야 확장형 적외선카메라 설계)

  • Lee, Yong-chun;Song, Chun-ho;Kim, Sang-woon;Kim, Young-kil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.699-701
    • /
    • 2017
  • Typical operating method for long-range observation cameras are to detect the target at a wide angle of view and to recognize/identify the target with a telephoto angle of view. And the detection/recognition range performance is an important item to evaluate the performance of the defense infrared camera. To increased the detection range performance, the camera's field of view should be narrowed. Due to the narrow field of view, the probability of finding target is relatively low. In this paper, we propose a method to search for target by providing a wide angle view while maintaining detection range performance. M&S and optimized design were used to develop infrared camera with extended field of view and the results of the test summarized.

  • PDF

A Study on Phase Bearing Error using Phase Delay of Relative Phase Difference

  • Lee, Kwan Hyeong
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.2
    • /
    • pp.76-81
    • /
    • 2021
  • This study proposes a method to reduce the phase error of the received signal to detect the object bearing. The phase shift of the received signal occurs due to the multipath of the signal by natural structure or artificial structures. When detecting the direction of the object using radio waves, the phase of the received signal cannot be accurately detected because of the phase bearing error in the object detection direction. The object detection direction estimation depends on the phase difference, antenna installation distance, signal source wavelength, frequency band and bearing angle. This study reduces the error of the phase bearing by using the phase delay of the relative phase difference for the signals incident on the two antennas. Through simulation, we analyzed the object direction detection performance of the proposed method and the existing method. Three targets are detected from the [-15°, 0°, 15°] direction. The existing method detects the target at [-13°, 3°, 17°], and the proposed method detects the at [-15°, 0°, 15°]. As a result of the simulation, the target detection direction of the proposed method is improved by 2 degrees compared to the existing method.

Multi-Human Behavior Recognition Based on Improved Posture Estimation Model

  • Zhang, Ning;Park, Jin-Ho;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.5
    • /
    • pp.659-666
    • /
    • 2021
  • With the continuous development of deep learning, human behavior recognition algorithms have achieved good results. However, in a multi-person recognition environment, the complex behavior environment poses a great challenge to the efficiency of recognition. To this end, this paper proposes a multi-person pose estimation model. First of all, the human detectors in the top-down framework mostly use the two-stage target detection model, which runs slow down. The single-stage YOLOv3 target detection model is used to effectively improve the running speed and the generalization of the model. Depth separable convolution, which further improves the speed of target detection and improves the model's ability to extract target proposed regions; Secondly, based on the feature pyramid network combined with context semantic information in the pose estimation model, the OHEM algorithm is used to solve difficult key point detection problems, and the accuracy of multi-person pose estimation is improved; Finally, the Euclidean distance is used to calculate the spatial distance between key points, to determine the similarity of postures in the frame, and to eliminate redundant postures.

Iterative Pre-Whitening Projection Statistics for Improving Multi-Target Detection Performance in Non-Homogeneous Clutter (불균일 클러터 환경에서 다중 표적탐지 성능 향상을 위한 반복 백색화 투영 통계 기법)

  • Park, Hyuck;Kang, Jin-Whan;Kim, Sang-Hyo
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.49 no.4
    • /
    • pp.120-128
    • /
    • 2012
  • In this paper, we propose a modified iterative pre-whitening projection statistics (MIPPS) scheme for improving multi-target detection performance in non-homogeneous clutter environments. As a non-homogeneity detection (NHD) technique of space-time adaptive processing algorithm for airborne radar, the MIPPS scheme improves the average detection probability of weak target when multiple targets with different reflection signal intensities are located in close range. Numerical results show that the conventional NHD schemes suffers from the masking effect by strong targets and clutters and the proposed MIPPS scheme outperforms the conventional schemes with respect to the average detection probability of the weak target at low signal-to-clutter ratio.

Analysis of the range estimation error of a target in the asynchronous bistatic sonar (비동기 양상태 소나의 표적 거리 추정 오차 분석)

  • Jeong, Euicheol;Kim, Tae-Hwan
    • The Journal of the Acoustical Society of Korea
    • /
    • v.39 no.3
    • /
    • pp.163-169
    • /
    • 2020
  • The asynchronous bistatic sonar needs to estimate direct blast arrival time at a receiver to localize targets, and therefore the direct blast arrival time estimation error could be added to target localization error in comparison with synchronous system. Direct blast especially appears as several peaks at the matched filter output by multipath, thus we compared the first peak detection technique and the maximum peak detection technique of those peaks for direct blast arrival time estimation through sea trial data. The test was performed in a shallow sea with bistatic sonar made up of spatially separated source and line array sensors. Line array sensors obtained the target signal which is generated from the echo repeater. As a result, the first peak detection technique is superior to maximum peak detection technique in direct blast arrival time estimation error. The result of this analysis will be used for further research of target tracking in the asynchronous bistatic sonar.

Analysis of Detection Performance of Radar Signal Processor with Relation to Target Doppler Velocity and Clutter Spectrum Characteristics (표적 도플러 속도와 클러터 스펙트럼 특성에 따른 레이더 신호 처리기의 탐지 성능 분석)

  • Yang, Jin-Mo;Shin, Sang-Jin;Lee, Min-Joon;Kim, Whan-Woo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.1
    • /
    • pp.47-58
    • /
    • 2011
  • MTI filter is used to separate target signal from clutter in many radar signal processing. By suppressing clutter before CFAR detection, the detection performance can be improved. As a radar system designed, a design engineer generally takes averaged SNR and CNR into account and does not include the effect of MTI filter's frequency response. In practice, when the signals including clutter are pass through the filter, SNR is widely varying according to target velocity and CNR is also varying according to clutter center frequency and spectrum spreading. In this paper, we have derived the relationship between the MTI filter's frequency response and a target's velocity and a clutter's spectrum characteristics. With the variation of SNR and CNR at the filter output, the detection performance of CFAR has been analyzed by the simulation and has made certain of their influences on the performance.

Specific Detection of DNA Using Quantum Dots and Magnetic Beads for Large Volume Samples

  • Kim, Yeon-Seok;Kim, Byoung-Chan;Lee, Jin-Hyung;Kim, Jung-Bae;Gu, Man-Bock
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.449-454
    • /
    • 2006
  • Here we present a sensitive DNA detection protocol using quantum dots (QDs) and magnetic beads (MBs) for large volume samples. In this study, QDs, conjugated with streptavidin, were used to produce fluorescent signals while magnetic beads (MBs) were used to isolate and concentrate the signals. The presence of target DNAs leads to the sandwich hybridization between the functionalized QDs, the target DNAs and the MBs. In fact, the QDs-MBs complex, which is bound using the target DNA, can be isolated and then concentrated. The binding of the QDs to the surface of the MBs was confirmed by confocal microscopy and Cd elemental analysis. It was found that the fluorescent intensity was proportional to concentration of the target DNA, while the presence of non-complementary DNA produced no significant fluorescent signal. In addition, the presence of low copies of target DNAs such as 0.5 pM in large volume samples up to 40mL was successfully detected by using a magnet-assisted concentration protocol which consequently results in the enhancement of the sensitivity more than 100-fold.

A Counter-Countermeasure using Signal Distribution Characteristics between Two Bands in a Crossed Array Tracker (십자 배열 탐색기에서의 두 대역간 신호 분포 특성을 이용한 반대응 능력)

  • 이석한;오정수;서동선;최종수
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.4A
    • /
    • pp.316-323
    • /
    • 2002
  • In this paper, we propose a counter-countermeasure (CCM) in a crossed array tracker for efficient target tracking under countermeasures (CM) operated by a target. The proposed CCM adepts two detection bands and uses the signal distribution characteristics to discriminate between the target and the CMs. To avoid wrong detection of a target position due to missing signal pulses, it predicts current target position based on previous target position. To evaluate the performance of the proposed CCM in a crossed array tracker, we perform numerical simulations for target signal extraction and target tracking under various conditions. The simulation results show that the proposed CCM removes the CM effect well and tracks the target efficiently.

Secure and Robust Clustering for Quantized Target Tracking in Wireless Sensor Networks

  • Mansouri, Majdi;Khoukhi, Lyes;Nounou, Hazem;Nounou, Mohamed
    • Journal of Communications and Networks
    • /
    • v.15 no.2
    • /
    • pp.164-172
    • /
    • 2013
  • We consider the problem of secure and robust clustering for quantized target tracking in wireless sensor networks (WSN) where the observed system is assumed to evolve according to a probabilistic state space model. We propose a new method for jointly activating the best group of candidate sensors that participate in data aggregation, detecting the malicious sensors and estimating the target position. Firstly, we select the appropriate group in order to balance the energy dissipation and to provide the required data of the target in the WSN. This selection is also based on the transmission power between a sensor node and a cluster head. Secondly, we detect the malicious sensor nodes based on the information relevance of their measurements. Then, we estimate the target position using quantized variational filtering (QVF) algorithm. The selection of the candidate sensors group is based on multi-criteria function, which is computed by using the predicted target position provided by the QVF algorithm, while the malicious sensor nodes detection is based on Kullback-Leibler distance between the current target position distribution and the predicted sensor observation. The performance of the proposed method is validated by simulation results in target tracking for WSN.